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The free energy of a multicomponent scalar field theory is considered as a funétip@al] of the free
correlation functiorG and an external curregdt It obeys nonlinear functional differential equations which are
turned into recursion relations for the connected Green'’s functions in a loop expansion. These relations amount
to a simple proof tha¥W[ G,J] generates only connected graphs and can be used to find all such graphs with
their combinatoric weights. A Legendre transformation with respect to the external current converts the func-
tional differential equations for the free energy into those for the effective eddr@y® |, which is consid-
ered as a functional of the free correlation funct®rand the field expectatiod. These equations are turned
into recursion relations for the one-particle irreducible Green'’s functions. These relations amount to a simple
proof thatl'[ G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with
their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of
classes of graphs. Examples are given for resumming one-loop and multiloop tadpoles, both through all orders
of perturbation theory. Since the functional differential equations derived are nonperturbative, they constitute
also a convenient starting point for other expansions than those in numbers of loops or powers of coupling
constants. We work with general interactions through four powers in the field.

PACS numbse(s): 64.60.Ak, 05.70.Fh, 11.10.Gh

I. INTRODUCTION ates only 1 PI Green’s functions, similar to the one found in
Refs.[1,2].

The free energy of a statistical or quantum field theory By usingG as a functional argument, and, to the extent
may be viewed as a functional of the free correlation funcpossible, derivatives with respect @instead of] or ®, we
tions. It obeys functional differential equations which may bekeep the identities foww andI” and the recursion relations for
converted into recursion relations for the connected vacuurthe connected and 1 Pl Green’s functions simple. In contrast
graphs of the theory. Subsequently, functional derivatives ofo Ref.[3], we do not use the technique of “cutting” free
W with respect to the free propagators or their inverses caoorrelation functions, but always “amputate” them. As in
be taken to generate the Feynman diagrams of all connecteREf. [3], the graphical operations necessary to solve the re-
Green’s functions. This program was developed a long timeursion relations can be implemented on a computer for an
ago by Kleiner{1,2], but used only recently for a systematic efficient generation of higher order graphs.

generation of all Feynman diagrams of a multicomponght Formally, we consider all our calculations for a statistical
and ¢?A theory[3], and of QED[4]. For ¢* theory, only the  theory ind Euclidean dimensions, but with trivial changes of
symmetric case was treated. factorsi, all results are valid as well for a quantum field

However, both in statistical physics and particle theory,theory in Minkowski space and for quantum mechanics. In
this symmetry is often broken. For this reason we generaliz¢his work, where we often deal with more than one interac-
the symmetric treatment of Reff3], and allow for interac- tion term, our ordering principle is always the number of
tions of all powers of the field through four. We introduce anloops and not powers of coupling constants.
external sourcel to be able to generate also Green'’s func- The structure of the paper is as follows. In Sec. Il we
tions with odd numbers of external legs as derivative®\Vof repeat the steps that led to a functional identity V&G
In contrast to Ref[3], this also enables us to generate con-and a recursion relation for its perturbative coefficients in
nected Feynman diagrams for thepoint functions through Refs. [1-3]. This gives us the opportunity to specify our
L loops without having to generate any diagrams with moreslightly different conventions. Going beyond the consider-
thanL loops first. As a byproduct, we get an alternative proofations in Ref.[3], we treat part of the quadratic term as a
to the one found in Refd.1,2] that W generates only con- perturbation. This can be used to cancel one-loop tadpole

nected Green'’s functions. corrections which drastically reduces the number of vacuum
We then Legendre transform the functional differentialgraphs for the free energy, as utilized before in REBS].
equations foMW[ G,J] into ones for the effective enerdpr In Sec. Il we treat the asymmetric case for the free en-

effective action in quantum theor¥'[G,® | and derive from  ergy W[ G,J]. We derive identities foMV[G,J] and recur-
these recursion relations for the one-particle irreduciblesion relations for the Feynman diagrams representing the
(1Pl) Feynman diagrams representing the proper vertices afonnected Green’s functions.

the theory. No graphs beyoridloops have to be considered  In Sec. IV we translate the identities fak[G,J] into

to generate propen-point vertices through. loops. As a identities for the effective enerdy[ G,®] and subsequently
by-product, we get an alternative proof tHgtG,®] gener-  derive recursion relations for the one-particle irreducible
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(1 Pl) Feynman diagrams representing the proper vertices of B. Identity for W,

the theory. We finally present how part of the quadratic term RegardingW as a functional of the kernés %, we can
can be treated as a perturbation to cancel all tadpole correge e 5 functional differential equation fa. Our starting
tions to propagators in graphs needed for the proper Vertwj?oint is the identity

with one or more external legs, thereby drastically reducin

the number of diagrams. Section V contains a summary of S
our results and an outlook. f D¢5751{¢2 exp—E[¢,G,A,L])}=0, 8
Il. SYMMETRIC CASE which follows from functional partial integration and the
o vanishing of the exponential at infinite fields.
A. Definitions Carrying out the¢; derivative, replacing appearances of

Consider a scalar fielg with N components ird Euclid- ¢ With appropriate derivatives with respect® * and fi-
ean dimensions whose thermal fluctuations are controlled byally using the results of Appendix A to translate all such
the energy functional derivatives into derivatives with respect@®yields an iden-

tity for W,

E[(ﬁ,G,A,L]:%J (G +A1) b1y oW oW
12 512_2J' G23f_2f A136246355
3 13 3 45

45

+ 21_4f Li23ap1p2p3dhs, (1) [ SW
1234 - % f L134E f67(GZ3GABGS7+ G26637G45) EGJ
whereL 1,34is a self-coupling and where we keep the option r S2W
open to treat a parf\j, of the quadratic term irE as a —%f L 1344 f G26637G4BG59—}
perturbation. The numerical indices ffG ™1, A, andL are 345 6789 0Ge70Ggg
meant as a short-hand and represent spatial as well as tenso-

rial arguments zf L f GG 7—5W GG ad =0
3 245 1345- 6789 263 5G67 48 595G89 Y
- s [ g _ )
={x1,a1}, = d%:1,  d1=da,(x1), (2
boa Split Winto a free and an interacting part,
G =G, (X1, X2, A1p=A4 4)(X1,%0), W=Wo+W, =Wy | —o+W,. (10
For Wy, Eq. (9) reduces to
L1237~ L oy apaga,(X1:X2,X3,Xa) - () SW
0
) . 512_zf Gzafzoy (11)
For example, in standar@” theory we would have 3 13

so that, using also the results of Appendix A, we get the

Gl (X1,X2) = 84 0, 8(X1—X2) (dy- do+m?), (4)

@y, azap useful relations
oW,
Aalaz(xl 1X2) = 5m25a1a2 5(Xl_ XZ)! (5) —O = %GIZl (12)
0G5
1
La1a2a3a4(xl 1X2 aXS 1X4) -3 )\( 5a1a25a3a4+ 50110136012014 and

- W,
+ 5a1a45a2a3) 5(Xl XZ) e 5é - _ %(G531G2741+ GI41G£31). (13)
X 8(X1= %) (X4~ Xa),  (6) e
Up to an additive constant, which we assume to be adjusted
where sm? could represent a modification @h? that we t0 zero by an appropriate normalization of the path integral
want to treat perturbatively. Using natural units, where themeasureD ¢, W, itself is given as usual by

Boltzmann constarkg times the temperatur€ equals unity,

the partition functionZ and the negative free enerdyy are 1 ~1 1

given by a functional integral over the Boltzmann weight WO[G] = _5 l(lnG )11 = 5 O ’

exp(_ E[¢]), (14)
Z[G,A,L]=expW[G,A,L]) where we have introduced a graphical representatiofor

Subtracting Eq(11) from Egq. (9), using Egs.(12) and
(13), settingx,=x4, and integrating ovex, gives a nonlin-
ear functional differential equation faW, ,

=f D¢ exp —E[4,G,A,L]). (7)
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oW, L N
Gler +3 L1236G15G3at 3 | A15G12
12 12 1234 12

oW,
+ f AlZGlSGZ“TG + j |—1234G12(535G46
1234 34 J123456

oW,

! f L G,G W
3 ) yausers 1234515G2¢ 37G4856565G78

_,_lf L 4G G G7G %%:0 (15)
: 12345678 12347157263 485656 5G78 .

For A=0, this reduces to Eq2.58 in Ref.[3].

W 1 oW, s
§Ga 2 ' 6G126Ga 3
(1

2 1

~Ajp = 1—{a}—2, =Ly = >< .
37 4

(17

Lines that are connected at both ends are propag&tofdl
space arguments that are not indicated by numbers are inte-
grated over. Now Eq(15) reads

Q)-100 @)+ @)« O 5 (L) 3 (D)

Note that a derivative with respect @graphically means

removing(“amputating”) a line from a Feynman grap(fior

details see Ref3] and Appendix A. This will be important
when we representV, as a sum of Feynman graphs in the

next section. For example, the operation\&h on the left-
hand side of Eq(18) multiplies each graph iW, by the
number of its lines.

C. Recursion relation

Now split W, and A into different loop orders,

W = Z w = Z

L=2 L=2
(19

and

(18

~-A= —[a— = ZA(L) Z__..__

(20

whereA®® counts formally forL intrinsic loops.
Equation(18) then splits into

C@ :%@O +%, (21)

from which follows

1 1
@ =§O@ +§7 (22

and

for L>2.

(23

Let us now derive a recursion relation for thé") themselves instead of their derivatives with respe@tirst note that
sinceW depends only ol and A only through the combinatio® 1+ A we have

W oW
SA1, 6GL;

where we have used EGA12).

IG G i (24
a1 245634’
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Because of Eq(20) we can write then for aniz
(L) ow oW _
/12A 25AD T iz O3 O3 = ]@ ' (25

Splitting up into loop orders gives
(L) SW(E=)
oW _ _
/12 Biz 5A§2 i A12G13G24 6Gay 26

for 1<I<L -2 and, using Eq(12)

(&) Wo 1
(L-1) W / (L 1) L-D  — 25
/12 AL 5A(L N~ 1234A G13G24 5G34 2 A G2 = 2 (27)

for L=1. Since arL-loop diagram without two-point insertions containd.2{1) propagators and since &toop two-point
insertion causes a reduction in the number of propagatord byl 2the following relation for theé_-loop contribution tow
holds forL=2:

S L—-1
f[elz&G +2 (21— 1)A125A(| }VV(L)—Z(L 1wt (28)

Making use of Eqs(26) and (27) this can be rewritten as

sw) 2L-3 SWL—D
f =2(L-1)wt (29)

Girgg- 5 | Ak VGu- 2|—1f ADG 1 Go——
12 12 5612 2 12 I:El( ) 123 1213%24 5G34

or

_ L-2
C@+2L23 +§(2l—1)=2(L—1)@. (30)

Rewriting the first term using the recursion relati@3) gives

1
@ B 5
! ISy L 1 BE (31)
L—116 * ; n] * 2 " 6 1=2

for L>2. ForA=0 and appropriately adjusted conventions this reduces tqZ=6y) in [3].
We have used Eq$22) and(31) to determine all vacuum graphs and their weights, combinatorial prefactorshrough
five loops for the casAa =0 and listed them in Table I.

With a one-loop correction
A=AD = = e (32

we get the additional graphs listed in Table II.

D. One-loop resummation

Let us now try to adjust the one-loop two-point insertiB2) so that it cancels the trivial but ubiquitous one-loop
fluctuation Q , present in most diagrams in Table I. For this purpose, define
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TABLE |. Vacuum diagrams with their weights through five loops.

Number
Diagrams with their weights

of loops
1 1 O
2 s (O

3 £ & OO0

—O— = —{— +; 33

and set

—L}— =0 (39

for L>1. Then Eq.(31) becomes
1 1 1L=2 (35)
(D) =51 @)+ &) 5 (DB
for L>2.

Now we show(i) that W(®) contains the two terms on the right hand side of 8§) only in this combination andi) that
if W) with L>2 contains the two terms on the right-hand side of B8) only in this combination, then this is also true for

W(L+l).
1 1
= — Z (36)

Using Egs.(22) and (35) gives
which proves(i). The only terms on the right hand side of E§5) that could potentially violatéii) are the terms with
=2 and/orL—1=2 in the sum. If botH =2 andL—1=2 (i.e., forL=4), the only term in the sum is
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TABLE II. Additional vacuum diagrams through five loops caused by the one-loop ins = —e—

and their weights.

Number
Additional diagrams with their weights

of loops

2 -;-Q

s

1 1 1 1
(2 2 -5 G000 +5 OO +; {300 +; 01D

é

(37)

If only one ofl andL—1 equals 2(i.e., forL>4), the potentially dangerous terms in the sum are of the form

1 1 1

That is, in both cases only the combination on the right-hand side of3pappears. This finishes the proof (@f).

Once we have used the recursion relaii®B) to compute —1O— =0. (40)
any W\, we can set

1 Q This drastically reduces the number of diagrams in any given
(39) order, since foL.>2 no one-loop mass corrections is present
anymore. However, we are not allowed to use the result as an
input for our recursion relatiofB5), since the two terms on
the right hand side of Eq33) behave differently in the re-
cursion relation.
such that Note that now
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TABLE lll. Remaining diagrams with their weights through six loops with a one-loop adjusted two-point insertion.

Number
Remaining diagrams with their weights
of loops
1,2,3,4 1O -+ (O % x @

L @
32
1 ‘ ) 1

universal critical amplitude ratigs].

1 1
= —= C}C) + — @ 3 (41 As an alternative to explicitly constructing the graphs in
8 2 Table Il by recursion relations, we could replace the propa-

gator in the graphs of Table | according to

With the condition(40) this becomes
G 1oG 1+, (43

1
=-3 00 42
G— (G '+A) '=G(1+AG)™*

=G+GAG+GAGAG+:--, (44
which is the only diagram left with a one-loop mass correc-
tion. with
In Table Il we list the diagrams with their weights
through six loops that are left after adjusting the two-point
insertion according to E¢39). Through four and five loops A= _%f L1raGas. (45)
this adjustment has been used in R¢f.and[6], respec- 34
tively, to simplify the renormalization of the vacuum energy
in ¢* theory, which is used for the computation of some Diagrammatically, this amounts to replacing

e — -1 QO O QO L QOO

(46)

OOlf—-‘

and adding up the resulting graphs through the appropriate loop order. The result is again the graphs in Table Il with the same
weights.
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Ill. GENERAL CASE S

= -W K,L D¢ —

A. Definitions 0=exn [C.J.G.K, ])J ¢ o1

Now let us generalize our treatment to the case with gen- Xexp—E[¢,C,J,G,K,L])
eral interactions through four powers in the field

= J+JG*15W+JK ow
VU172 83, T ) 125G,

E[¢,c,J,G,K,L]=C+fJl¢1+%f G5 b1y
1 12 5°W SW SW
-3 L + =

3f234 123A< 53,662 33, 5G341) (55

+%f Ki2sp1 263
123
and
+2i4f Liosaprdbadpaba,  (47)
1234 o
O=exp(—W[C,J,G,K,L])f D¢5—
WhereGl’zl, K13, andL,34 are symmetric in their indices. b1
For example, for aZ,-symmetric single-component* x{ ¢, exp —E[4,C,J,G,K,L])}
theory with background fiel@, i.e.,
=81+ J &N+ZJG_1 oW
) 1 , 12 15J2 3 13 66531
E[¢]= [E(O');L(P—i_ayqb) +szm ((P+¢) 2
1 fK 4( W +5\N 5W)
+EN g+ p) ey, (48) 3 103,063, 63, 9Ggy

we would have

2f L ;( FW oW 5\/\/) =6
® Jass M 8G,10G,e  6GL 6G )

_ 1 2,122, 1y 4
c= L[Z(a"@) Tam et aah gt Cly, (49 where we have followed similar steps as for the derivation of
Eq. (9) except that we have not yet replaced derivatives with
Ji=— P+ mPe,+ %Mpf- (50) respect toG ! by those with respect t6.
Split W again into a free and an interacting part,
Git= 811 dp+m2+ 2N ), (51
12 120912 2N P1P2 W=Wo+W,=W| | _o+W,. (57)
K 123= 0120 52
125~ 012013\ €1, (52) For Wy, Egs.(55) and(56) reduce to
L1034= 612013014\ 53
1234 12¢13¢14 ( ) iy +f G,15VVo:O (58)
The partition functiorZ and the negative free enerdy are S PPN
given by
and
Z[C,J,G,K,L]=expW[C,J,G,K,L])
810+ %Jrzjc;*l%:o (59)
=f D exp —E[$,C,J,G,K,L]). gy *2 | Crage =0

54 . - .
64 respectively. Combining them and using the results from Ap-

The energy is now regarded as a function@fand a  Pendix A, we get the useful relations

functional of ¢, J, G, K andL. We will mainly be interested

in its dependence o, J, andG. oWo
p 5y i ©
B. Identities for W,

We continue with deriving identities similar to E¢). Mo il i [ 6duG.d 61)
We now have the possibility to represent each occurrence of 5G; TR )u 1333G24d4 |,
the field ¢ by a derivative with respect td. We keep the
number of these derivatives at a minimum and use as much S2W
as possible derivatives with respect@oto keep the identi- —(11= _%J (G1,G34+ G1Goa) s, (62)
ties and the recursion relations derived from them as simple 0J16G 3 4

as possible.
The identities we need are and
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5°W,

———T~=1 = 1| G13G24+ G1G2at J (G136 25G 461 G14G25G 361+ G23G15G 46+ G24G15G36) I5 6 |- (63
0G5 6G3y 56

With the same normalization of the path integral meafige as before we have

WO[C,J'G]:mf D¢exp{ -C- LJl(f’l_%LzGl_zl(ﬁl(ﬁz)

—|nf D¢exp{—C—LJ1(¢1— Lelgz)—gflzc;;;((/)l— LG13J3)(¢2— f4c324J4”

:_CWL%LZGlleJanj D¢9XI{ _%LzGI21¢1¢2):_C+%f1261ﬂ132_%f1(|n G hHy. (64

Subtracting Eq(58) from Eg.(55), multiplying with [,G15J,, integrating ovex, and using Eqsi60)—(62) and Eq.(A12),
we get

oW,
j 31_5J —3 f K124G10Gaada— 2 J K124G1434G2505G3e)6+ 7 f L 1234512G355G16)6
1 1 1234 123456 123456

oW, oW,
+3 f L 1234G15)5G 266G 37137Gagls — f K124G1434G2:G36~— + 5 f L123512G3sds——
12345678 123456 6Gsg 12345 6dy

1 Wi oW,
+% L 123451515G 266G 377 53 +3 |—123ﬁ15~]562636637G48_5G
1 4 1 78

234567 2345678
. oW, oW,
+3 L1235 5636G47— L 1238515356366 47— ==—=0. (65)
1234567 J26Ge7 1234567 6J; 6Ggy

Subtracting Eq(59) from Eq. (56), settingx,=X,, integrating oveix, and using Eqs(60)—(63) and (A12) we get

oW, oW, 1
31—5 3 2 G12—5G +3 K128G15G3adst 5 K124G1434G2535G3ed6— L123/512G3s
1 1 12 12 1234 123456 1234

oW,
_J L1234G12G35~J5G4636_%J L1234GlSJ5G26JGG37‘J7G48J8+%j K1olGio - 535
123456 1 123

2345678
+1f K3GJGJ5W J KﬁJGGéW'Jrf GG W,
2 12345 12 14949 25Y5 5J3 123456 12 149425 365G56 12345 12 24 35WG45

oW, oW, ow, oW,
+ 12345K12ﬁ24635F1 ﬁ_z L L123££‘126356465G o NN L123AG15‘]5626\]GG37G48@

23456 2345678
ZJ L 155/G1:G2G5/G FW, Zf 1258155 2GaG e SN (66)
3 12345678 1234152637 485G565G78 3 12345678 12349159263 485G 5G78 .
|
C. Change of variables which already incorporates this propagator. Then &4)

can be rewritten as
Instead of representing Eq&4)—(66) graphically, let us
first perform a change of variables that reduces the amount of - N = 1 1
work needed for solving the recursion relations to be de- WolC.J.G]= —C+5f12612 JlJz—EL(InG )11
rived. Sincel is always connected to a free propaga@omwe (68)

can as well define a modified current i , i i )
Performing this change of variables introduces into e

identities double derivatives with respect §owhich we
3= J’ N (67) would like to avoid in favor of derivatives with respect to
! 1272 free correlation functiorG. This can be achieved with the
result
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( 532W5J| ) ( 6J I) ( 6J |
1092/ 1/ g\ 0J2
of Appendix B.

Equations(65) and(66) then become

oW,

. 198G/,

(69

S 5\N| 1 E N1 L1 a7 .1 S N 5W|
Ji——3 | Kudiads—3 |  Kiadidods+s L123fG12d3dst 5 L 12341192304~ K128)1G24G35 _——
178, 123 123 1234 1234 12345 0Gys

W, N W, _ W,
- K123313:Gas—+3 L123/51233Gss—+3 L12340132d3Gss— + L12343132G35G 46
1234 12345 12345 123456 5G

(S\]4 5J5 (5\]5 56
) — W, — SW, W,
+3 L123401G25G3¢Gar—+3 L123401G25G36Gar— =0 (70
1234567 8356Gg, 1234567 835 9Ge7

and

SW,  [— oW, - S _
2| Gy | Ji—=3 | KuGids—3 | KipaliJods+; L1234515G3at L123/5123334
126G, J1 sy, 123 123 1234 1234

) S oW, W _ SW,
+35 L123a)1d2d3d4— 3 K128G1,G3s——3 K1230135G34——3 K123J1G24G3s—
1234 1234 53, 1234 53, 12345 6G 5

5°W, W, W, W,
- K128614G 2566 ———— K128G24G35G 16— +2 L1234512G35Ga6
123456 83,0Gss 123456 8Jg 9Gas 123456 6Gsg

W, - W, W,
+2 L1236G12d3Gss—+2 L12341132G35Ga6— + 35 L1234113233Gss—
12345 53 1 1 S

23456 6Gsg 2345 Js
s W, — 5°W,
+3 f L1234515G26G37/Gags ———— +3 f L123401G25G36Gar———
12345678 6G560G7g 1234567 GegdJ7
) oW, W, — oW, oW,
3 L 12345156 26G37G g +3 L 1234)1G25G36Gar— =0. (71)
12345678 6Ggg 6G7g 1234567 6Js 6Ge7

To represent Eqg70) and(71) graphically, write for the derivatives of/, with respect taJ andG

oW SWp SW SW, %
5 3G ) T8RGn T ML) $GuiGa

4

(72

and use the vertices
1

2 1
—L1234 = X y —1{123 = * 3 "'jl = 3 —C = e, (73)
3 4 2

3

E—

Propagator§s are indicated by lines connected at both ends. The double liderudicates that the propagator is absorbed into

our new currend, so derivatives with respect ® act only on propagators not connected to a current, i.e., on singld §ees
however, Eq(75)]. All space arguments that are not indicated by numbers are integrated over.
We can write Eq(68) now as

= 1 1
WO[C,J,G]z . +§.=. +§O, (74)
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where by definition

e = | GLIh (75

Eq. (70) as

X0
o) %>@ L)+ =)+ XA
v )+ (K w) 7

and Eq.(71) as

N3

1O DO OO
SORNOMIONG
O+ ) 3 1)
() 3 (o) 3 (D)

By construction, the simpler equati@n6) involves only thelJ-dependent terms and is therefore by itself not sufficient for an
investigation of thel-independent terms, for which EZ7) has to be used.

wll\.')
[NR ROL]

[SUAN V)

PO
DOL

[SCR N
Wl

D. Recursion relations

For later use note the following topological relations. hgtbe the number of four-verticesg the number of three-vertices,

n, the number oth, ng the number of free propagato@ not connected to & andL the number of loops in a connected
diagramD. Then

3n3+4n4:n1+2nG, n3+2n4:2(|__1)+n1, (78)

:@ (@:@ 7

and
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It is useful to consider a double expansion in the nunibef loops and powers of J orJd,

L=0n=0 L=0n=0
(80)
Then thelL-loop contribution to the connectedpoint function with vanishing sourcégis given by
n n
gL _ d d wkn (81)

(L) =
i1, 5‘Ji1”'5‘JinW -0 5Ji1"'53in

=0 (82
1
= @ —
, 2 0

The otherW(-" constituteW, .

Using
6
_ 1 1N ¢ 1_.‘ 1 1
‘Ei><+4+4 _24X+8><’ (86)
1
N
T4 2 4

(88)
and the recursion relation
= \ 0] 0 l —. 0 — \
L
‘ o1 (89)
3 lg(; m=1 ‘

We have

and from Eq.(74)

l\.')l»—-\

O (83

Eq. (76) can be split into

b =

DO | =
W
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where the dot on the equal sign means that the right hand side only inwafésthat are part oV, , i.e., excluding {,j)
€{(0,0),(0,1),(0,2),(1,0) and negativé or j. Equation(89) is valid for all W(-" which are part ofV, with the exception of
(L,n)e{(0,3),(0,4),(1,1),(1,2)

From Eq.(77) follow again equations leading with EG79) to Egs.(85)—(88), but also

2 e

1

Il

| =

3 1
ZQQQWC’—()W@’ (90)
which with Eq.(79) becomes

()1 0-0 L1000 o

3 1 1 ¥
0‘ @016 DR
45 @G
1=1 =2 (92
Equation(92) is valid for L>2.

Note that in Eq(92), but not in Eq.(89), the right-hand side involves graphs with more legs than the left-hand side, namely,
one more. This implies that for the generation of vacuum graphs, we have to consider also one-point functions. For all others
it is enough to consider only diagrams with equal or less numbers of legs. Note further that if all lower loop orders contain only
connected graphs, then the recursion relations generate only connected graphs. This establishes by ind¢tieméenates
only connected graphs, as shown before in Ref<).

As an example, we compu®/®9 in Appendix C. Combining Eqg83), (91), and the resultC13) of Appendix C, we get
W at J=0 in the three-loop approximation

wii=t=+50 +5 OO +5 3 +5 GO

l\DI»—-l

1
— — . (93
+76 (X 3O +43

At this low loop order, it is still relatively easy to check that the weights come out the same when using the combinatorial
prescriptions that come with the usual Feynman rules. | have written a computer code implementing the recursion relations for
the connected graphs. If we restrict ourselves to the symmetric case, it reproduces the graphs and multtplicatigs
related to the weights, see REB]) of Tables I-Ill in Ref.[3] and also all relevant entries in Tables V through VII there.

Except for the vacuum diagrams, we still have to use(B#). to convert the graphs representMginto connected Green’s
functions. For example, to compute the zero-loop contribmé%ff"‘) to the connected four-point function we combine EQs.
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(5\4\ PRSI I9'e Vo NI DG,

(c)(54) g 1 1 1 3 1 31 s 1 )

(94)

That is, each diagram with external currents is multiplied A .

by n!, supplied by external arguments replacing tleeand I'f¢,C,J,G,K,L]=-W[J,C,J,GK,L]+ f J1®4, (99
then splits into “crossed” graphs related by exchanging ex- !

ternal arguments. The external legs represent free correlatiaghere the new variabld is defined by

functionsG.
SW

P, = ~
6J,

, (100
IV. EFFECTIVE ENERGY

) C,J,G,K,L
Often in field theory, one is interested rather in the effec- = = . A )
tive energy or effective actioRi than the free energw and ~ Which implicitly definesJ as functional of®. As usual we

rather in the 1P| Feynman diagrams than the connected ond®Ve

Therefore, we translate in the following the identities ¥ur ST R

into identities forl" and derive recursion relations for the 1PI — =J;. (101
: : . oD,

Feynman diagrams representing the proper vertices. CJGKL

. Notice that as intended by introducing the extra source term
A. Relations betweenW and I and performing the Legendre transform with respectito

Since the physical situation in which we are interestednstead ofJ, we do not have to set=0 but onlyJ=0 to
does not necessarily correspondldte 0, let us for the pur- have a proper effective energy giving us the equation of state
pose of performing a Legendre transform introduce an addi¢or the equation of motion if we consider an effective action

tional source] into the definition of the partition functiog  through its stationary points. ,
and the negative free energy, In the following, we assume€, J, K andL to be fixed and

do not treat them as variables. Let us use the notation
Z[3,C,J,G,K,L]=expW[J,C,J,G,K,L]) S°F S S
( ‘(5) (&)F (102
2

5X15X2 (Y1Y2) Y1

=f D¢>exp( —E[¢,C,J,G,K,L]

For deriving identities fol" we first need some relations
. between the functional derivatives 8f andI". With Egs.
+ f 131¢1>- (95 (100 and(101) we get

A\ -1 1
2 2
Note that we trivially have the relations plZE( oW ) _[9%2) _| % :( il ) _
~ ~ 5\]15\]2 G 5J1 G 5(1)2 G 5(1316(132 G
Z[J,C,J,G,K,L]=ZC,J-J,G,K,L] (96) (103
and For® =0, P is the usual propagator. It will turn out useful to
reexpressd’,, as
W[J,C,J,G,K,L]=W[C,J-J,G,K,L] (97) 2inz
P =
between the quantities defined in E§4) and those in Eq. 2 ( 531532)
(95). With Eq. (64) it follows then that G
_1( 8% ) 1 ( 52) (52)
Wol3.C.3.61=W3,C.3.G.K Ll -0 2\ 3,0,) 25, \ 53]
=W[C,J-J,G,K,L -
[ X Jlk.=o 2( sz 1(52) (52)
=Wo[C,J,~J,G] = Sl T2l =] &
° z 5G121 3 22 5\.]1 G 5\]2 G

=—C+3 flzelzul—ﬁl)uz—ﬁz)

5GIZl :] 531 G 5:]2 G

- CI) 1(1)2 y (104)

_%L(|n671)11- (99

Define the effective energly by the Legendre transform
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where we have used ST , or
=081,— 1D+ —D,—2 13 ——T
0 12 ‘Jl 2 5@1 2 f3G13 56531
[~ [T
= |. "\ 5. 3Pz~ 2
Tl OBl _f KlS‘(JP255¢55F61+®252F1)
_Jj 5(1)3 ST 34 5 5 34 34
~Ja78 6Gy/5 168Gy, +zf L o°T
3 345 134 5G ;31 56251
_fj FL O or , ,
= 33@3_ 5G12¢’ _J’ 5T 1P67 5T - 5Fl 5F1
670D 6G 45 0P;6G,;  6G,5 G 5
[ 3sm
3 8(1)3 G 5G123

We have omitted now indicating the variables that are kept
_ (105  fixed, since everything is written in terms of the variables
® andG.
Split I into a free and an interacting part

B ST
116Gy,

Further we have

F=I‘O+F|EF|K'L=O+F| . (110)
52W _( 5(1)1) - f so,\ [ 83, Then,
5:]15G23 (G:]) 5G23 3 4 534 G 5G23 P
ro[q>,c:,J,(3]:—wo[j,c:,J,G]+fjlcp1
[ sucsed |
=— | Prl ——— (106
4 oD ,6G A A
4772 e :—WO[C,J—J,G]Jrleq:1 (111)
1
and
with
W ) B ( 8T )
56125634 3 56125634 (3(1)) (Dl:5WO[J,C,J,G] _ 5W0[C,J_J,G] :f 612(32_32)
_ ( 8T ) f( 5T ) 83, 83, 2 (112
0G126G34) )5\ 6P50Gas/
y 5(1)5) ie.,
5G12 3 ~
J J1=J1+f GiD,. (113
B ( 521’* ) 2
6G120G34/ Using Eq.(64), we get

]
56

8T 8T
T gl .
5@55(334 (G(I)) 5(D65G12 (GCD) Fo[(D,C,\],G]—CJFE l(InG )11+ 1J1(Dl

(107
+3 f 1261*21@1(1)2. (114
B. Identities for T’

Making use of Eq(97) and the relations just derived, Eqs.  For 'y, Egs.(108 and (109 reduce to
(55) and(56) can be rewritten as

T
sT ST 0=-1J +——fe*1c1> (115
o=—31+£—fegzlq>2—J Kisgso=t Yisd, Jp 2R
1 2 23 23
5T oT and
1
-1 L JP S Y
SLM 1234( s "0P5005 256341) 0= 81310+ 20 ZJ e (116
= — + - g
(108) 12 1¥2 5@1 2 3 13 56231 ( )

and respectively, so that
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8o - and
5(1)1_‘]l+ f2G12 CI)Z (117)
Ty
and PO 3(G13G24+ G14G23). (121
oy
Gt 2(Giot 1 ®;). (118 Notice that with Eqs(104), (118, and(A12) we get
In the following we also need oT, ST,
52T, P1o=Giot2——1 3G, =Gy~ ZJ 6136245G (122
5,00, Gz, (119 2
5T, Su_btractin_g Eq(115 from Eq. (108),(mu|)tip(|yin§); with
1
=15, D3+ 515D,), (120 @i, integrating overx; and using Eqs(118), (120, and
5D, 0G4 21 01ETs T o2 (A12) gives

oT,
0= f 5D (bl_%f K123(I)1q)2q)3_%f L123@1®2®3q)4_%f K123©1G23_%f 1234|_1234612¢)3(I)4
1 1 123 1234 123

o, o, 5T,
+f K123¢'1G24G35_+f L123fP1P,G35Gag~— +§f |—1234‘D1G25636(347—q)
12345 G 123456 6Gsg 1234567 50Ge7

ZJ L125/D1 GG 7GsG o, _oh (123
3 123456789 123 192596 38 495G 5q) 5G89

Subtracting Eq(116) from Eq. (109, settingx,= X4, integrating overx; and using Eqs(118), (120, (121), and (A12)
gives

ol
f_¢1 f Gy %f K123(I)1(I)2(D3_%f L1234<I)1q>2(1>3cl)4—§f K123Glzq)3_f 123412345 12P 3P4
12 6G1o 123 1234 123

ST, ST,
~l L G+3f K¢>GG5—+J K 1245146258 55—
2 j1234 123451G34 o 1280162453 P . 128514624 365q)4 e

2J ngeeear' il +2f L4q>q>GG5F'+2J LﬁGGéF'
12345678 o0 o0 0 2 385G45 0P 6G7g 123456 oo L 466656 123456 o7 T 466G56

5T,
+ % f1234 I-1234(1:’ 1GZSG3GG47— fl L123£§ 15626G 37648—

5P 560G, 2345678 0G550G7g
Zf L el 1CnGar 8T, or, Bf LACDGGGG(SFI 5T,
¥ J 12345678 12341072073 485G55 8Gg 123456789 o L 20 98- A9T6 6Ggg 6P 76Ggg
Zf L 134511G25G33G42G T o
¥ ) iozsauase 23T 2T 5656135565 6P 6G3,
+4 f 1234317635536 411G 5G on oh o (124)
| oz 123011022583C44Csd 606G 6Gg; 0D56Gas

To represent Eqg123) and(124) graphically, write for the derivatives df, with respect tob andG

1
ST _ NG B 1 §T; B 2 B 5§y B 2
50, T G 2 T 8eGy, T 8G120Gay
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and use the vertices
1

2. 1
—L1234 = >'< ,  —Kiz= /l\ , —h=1, —C=-e. (126)
1

3 4 2 3

Instances ofb are indicated by
(1)1 == ﬁ . (127)
1

Free propagator& are indicated by lines connected at both ends. The double linesaod ® indicate that there are no
propagators attached to them in the diagrams, so derivatives with resp8cadbonly on single linegsee, however, Eq.
(129]. All space arguments that are not indicated by numbers are integrated over.

Now Eg. (114 can be written as

—To=9+ o= + o= + (), (128

where by definition
(129

Po=1—2 42 4@ ) (130
1 2
We can write Eq(123 as
1 1 1 1
= +g>< +35 =€) +§>@

and Eq.(122 as

i
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Note that in the limit wher&K =0 and® =0 this is identical to Eq(18) in the limit A=0 if there we replac&V,—1T,.

C. Recursion relations
Consider a double expansion in the number of lob@nd powers of @,

e (7)) s P 159

L=0n=0 L=0n=0

[the double-indexed circles are not identical to those in(Bf).]. Then thel-loop contribution to the proper-point vertex
with vanishing external field is given by
8" 8"
(G0 — NS S )
F'l ----- 'n 5CI)i1---5CDinF oo 5(I)il"'5q)i r ' (139

n

We have from Eq(128

= @ = O R :1 o—0 R =
’ 2 0
The otherT' (™™ constituteT’, .
Using
Eq. (131) can be split into
1 1 1
:5/“\’ :2”4'><’ @Za‘:@v 3
1 1 1
(D) -100 4 X0 100 e -

and the recursion relation

Q L—1n-—1 i'
(D) - (B - XTE) 1) 158 (DT,

(139

where the dot on the equal sign means that the right-hand side only inJd{v8sthat are part of’,, i.e., excluding {,j)
€{(0,0),(0,1),(0,2),(1,0) and negativé or j. Equation(139 is valid for all T~ which are part of", with the exception

of (L,n) €{(0,3),(0,4),(1,1),(1,2).
for n>4.

Note that from Eq(139) it follows that
From Eq.(132) follow again equations leading, together with E@9), to Eqs.(137) and(138), but also

1 1 1
225@*@:5©©+5@’ (142

0.

[ R

(139

[ R
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1
-3 @ @ (142

and a recursion relation which we write down only fo= 0, since forn>0 the simpler relatior{139 can be used:

1
)+ o) 161
L—2 ( / 1 L-2
+ i +3 BE
=1 =2

which with Eq.(79) becomes

_|.
wl"“

I
[N

(143

Equation(143) is valid for L>2.

Note that in Eq.(143), but not in Eq.(139), the right-hand side involves graphs with more legs than the left-hand side,
namely, one more. This implies that for the generation of vacuum graphs, we have to consider also one-point functions. For
all others it is enough to consider only diagrams with equal or less numbers of legs. Note further that if all lower loop orders
contain only 1Pl graphs then the recursion relations also generate only 1Pl graphs. This establishes by indudtion that
generates only 1Pl graphs, as shown before in R&fg].

As an example, we comput&®® in Appendix D. Combining Eqg135), (142, and the resultD3) of Appendix D, we get
the effective energy’ at¢>—0 in the three-loop approximation,

=01 O+ OO <5

1 1 1 1 1 1
m@@m@w@w@@m@m@m

where propagator and vertices may contain a background-field dependence as given, e.g.(48)-H§8). The correspond-
ing effective potentialV in this model is then given by [®=0,C,J,G,K,L]=QV(¢), where Q) is the volume of
d-dimensional space. That is, it can be computed from vacuum graphs with constant backgrourd el that the
right-hand side of Eq(144) is the right-hand side of E493) with the one-particle reducible graphs omitted.

Except for the vacuum diagrams, we still have to use (E§4) to convert the graphs representifignto proper vertices.
For example, to compute the one-loop contnbutl?ifg to the three-point vertex, we first use Eq$37)—(139) to get

DD >

and then with Eq(134) obtain

wy___ & |1 EA
i’ = = 55,350,600, |4 >O=° t5
1
1 1 3 2
_5[2%:3 + %:2 + X}l:'-— 2A3. (146
1 3

(145

G‘)|’—‘
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That is, each diagram with external fieldsb is multiplied by —n!, supplied by external arguments replacing thg, and
then splits into “crossed” graphs related by exchanging external arguments. In contrast to the case of connected Green's
functions, the external legs carry only the external arguments and do not represent free correlation fGnctions

D. Graphs for renormalization

For the purpose of perturbatively renormalizing standgtdheory, we need the 1Pl Feynman diagrams represehting,
2 andI'“* for the caseJ=K=0. All '™ with odd n are then identically zero. The recursion relation for vacuum
graphs withL>2 results from writing Eq(143 for J=K=0 and then making use of E/8) with n;=n;=0,

1 1 ¥ 1S
() ~as | D) AT HE CDAR)] am

Notice that this is identical to Eq31) for vanishing two-point insertion.
Forn=2 andn=4 we rewrite Eq(139 with J=K=0. ForI'(~? we get forL>1

1 1 1= 7 (148
/‘ te T +§]§ -

while for I'*4 we get forL>0

@) o
. I Lol |
1 1 1< >y 1 J

(149

Since now we have written down only the recursion relations without starting with the identiti€s &main, we use for
the low-order terms not covered by Eq$47)—(149 just the resultg135), (137), (138), and (142 of Sec. IV C withJ=K

=0,
®- @0 @40
1 1
D= @0 DX -

It is now easy to use Eq$147)—(149) to obtain, e.g(compare to the 1PI graphs in the tables in R&f; for the vacuum
graphs, compare also with Table | in this wirk

1 1 ¥ 1 1
(D=0 D %0008
1 1 ¥ 1
-0 @) s DI
1 1 1 1
T 48 51 +§2_C>O©Q+E ’ (152)

| -

N —
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1 < 1 1 1

1 1 (] 1
DD DX

1 1
+T6>8<+§D:%:“‘ (156

In this way, all the graphs needed for the renormalization of Let us first indicate the changes to be introduced into the
¢* theory can be obtainefor a five-loop treatment see treatment of the asymmetric case to arrive at recursion rela-
Refs.[8,9]). There is no need to go beyohdloop order to  tions for thel'(™" in the presence of a two-point insertion as
determine all 1Pl zero-, two-, and four-point graphs throughdefined in Sec. Il. Since Eq¢b5) and(56) receive the addi-

L loops. | have written a computer code implementing thetional terms

recursion relations for the 1PI graphs. If we restrict ourselves SW

to the symmetric case, it reproduces the 1Pl graphs and their f Ajy— (159
multiplicities (trivially related to the weights, see R¢8]) of 2 0,

Tables I-1ll in Ref.[3] and also all relevant entries in Tables
V-VII there.

and

oW
2 f Atase=t (159
E. Absorption of tadpoles 3 23

Here we discuss the absorption of tadpoles, i.e.ON their respective right-hand sides, the changes on the right-
®-independent subdiagrams of the form hand sides of Eqs(108 and (109 is the addition of the

terms
(157 _JZAlzq)z (160
and
into the propagator for diagrams representing the proper ver- oT 8T,
ticesT'(“™ with n>0 in the theory. For standarg* theory, —ZLABKZ;: - LM (Gast ‘1’2@3)‘*'2@ :

this amounts to an absorption of momentum-independent (161)
propagator corrections into the mass. This drastically reduces

the amount of remaining diagrams and therefore simplifiesespectively, where we have used EHL8). This leads to the
the bookkeeping for higher-loop calculatiofig]. addition of
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_ f Ay, D, (162 a
12
=—

ol
_f AlZ(Dl(bZ_f G12A12+2f AlZGl3G247
12 12 12 5G34 A .
(163 for L>1, all tadpole corrections to propagators in 1PI
n-point functions withn>0 will be canceled. This drasti-
to the right-hand sides of Eq&l23) and(124), respectively. cally reduces the number of diagrams to be considered at
Then, in a notation which by now should be obvious, thehigher loop orders. Notice that with E(L22), the insertions
right-hand sides of Eq$131) and(132) receive the addition (170 and(171) can be summarized by writing

of
.—E—. (164) 1
Ap=— 5 34L1234P34|c1>:oa (172

and i.e., by inserting the full propagator into a one-loop tadpole
[compare to Eq(103 and the comment following Jt It

+ @ +2 Elo , (165 turns out that this cancellation is also true for
respectively. Note that foK=®=0 andI',——-W,, the
second resulting equation is identical to Eg8).

Equations (133—(137) remain unchanged, while the but not for
right-hand side of Eq(138) receives the addition of
, (174

o={1}=0 . (166)

NN

i.e., not for the vacuum graphs with their proper weights. A
simple diagrammatical explanation for this failure is that the
combinatorics do not work out since as a matter of principle
it is undefined which part of a vacuum diagram with a
cutvertex (a vertex which connects two otherwise uncon-
nected parts of a diagrans the tadpole and which part is the
O={LF=0 . (167 rest of the diagram. A reflection of this problem was already
encountered in Sec. Il D, where the two-loop diagrétf)
survived our one-loop resummation. Let us emphasize that

Finally, the right-hand sides of Eq&l42) and (143 receive  the values(170) and(171) for the two-point insertions have

For n#2, Eq. (139 remains unchanged. For=2 with L
>1, the right-hand side of E139) receives the addition of

the additions of to be usedhfter evaluating the recursion relations.
1 Let us now establish the connection between our resum-
5 (168 mation above and the one used in Hé&f]. In that work, a

distinction is established betweed-independent subdia-
grams of the forn(157), called “snail diagrams” there, and
®-independent subdiagrams of the forms

2 -J ’ Z II]@ (169 ’ ’ 79

called “tadpole diagrams” there. Referen€#0] uses the
usual Schwinger-Dyson equations to adjust the triple cou-
pling and mass such that there are no more graphs of the

and

respectively.
It is not hard to see then that with and only with the

choices n-point functions withn>1 to consider for the effective ac-
1 tion (equivalent to the effective energy in our treatmehat
(1] 5 (170 contain any “snail” or “tadpole” subdiagrams.

One notices that graphs of the foriti75 are absent alto-
gether in our treatment of the effective energy, which con-
at the one-loop level and tains only truly 1Pl diagrams in contrast to a weaker defini-
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tion of one-particle irreducibility used in Ref10], which  recursion relations for Legendre transforms of higher order
allows also for ®-independent subdiagrams of the form than the effective energyl,2,13. Also, the exploitation of
(175. This absence can be traced to the fact that we worklerivatives with respect to tensors representing interactions
with a general background field in Eq. (48). For the com- as in Ref.[4] seems promising to further simplify identities
putation of scattering processeshas to be adjusted to the and recursion relations.

radiatively corrected vacuum expectation valuef ¢, i.e.,

the true minimum of the effective potential, whose shift from ACKNOWLEDGMENTS
the tree-level value, can perturbatively be computed as a . _
sumuv =uv,+ corrections. If we expanded subsequently in It is a pleasure to thank H. Kleinert and A. Pelster for

our graphs, the corrections would lead to exactly the diaMany useful discussions and for a careful reading of the
grams containing “tadpole diagrams” as subdiagrams used@nuscript. 'I_'h|s work was supported by the Deutsche Fors-
as a starting point in Ref10]. In other words, the formalism CchungsgemeinschafDFG).

we use already takes care of the resummation of all tadpoles

(179 in the effective action, so that the triple coupling and APPENDIX A:  DERIVATIVES WITH RESPECT TO

the mass experience an appropriate correction when comput- SYMMETRIC G AND G™*

ing the corrections to o and settingp=v. This has nothing

to do with our recursion relations, but could have been use(gO
by the authors of Ref.10] from the start as well.

For the other class of subdiagrams, the “snail diagrams” 5 5
(157), our result(172) agrees with the result of R€fL0] that [5H 'S
the sum of all such subdiagrams amounts to a full propagator 12 @134
in a one-loop “snail diagram” and that therefore an appro-, 4
priate split of the mass term in standagf theory will
achieve a cancellation of all such *snail diagrams.” SHy, SHL

SHa, 6Ho!

The basic properties of derivatives with respect to an un-
nstrained tensdf ;, and its inverseH ;' are

= o o =0 Al
- 5H521, 5H§4l - ( )

= 013024, (A2)

V. DISCUSSION . .
where, according to our conventions, the labels could mean

In this work we have derived efficient recursion relationsdiscrete as well as continuous variables and diseare an
to generate connected and 1Pl Feynman diagramspfor according combination of Kroneckets and Diracé func-
theory both with and without»— — ¢ symmetry. Although tions. From
we used also external sourcgésind field expectation® as

functional variables, we were able to keep the recursion re- 0= iﬁ :_f HolH
lations simple by using as much as possible the free propa- SHgy 12 SHgy)s 1 52
gator G as a functional variable.
Taking W as functional of botiG andJ and T as func- [ SHis _10Hs,
tional of bothG and® allowed us to combine the advantages - LWSA 52 L 15 5H.,
of both the “current approach” and the “kernel approach”
[3]: By considering diagrams with argumerdtand® on the SH 1’51 .
external legs we avoided having to deal with “crossed” dia- = Lm Hspt Hyg 024 (A3)
grams which are related by exchanging external arguments
on their legs. This helps keep the number of diagrams aje get
intermediate steps low. Only when we finally want to con-
vert the coefficient functions diV andI” (in an expansion in SHL P
powers ofJ andT’, respectively into Greens functions as in SHay HisHas (A4)
Eq. (94) or Eq. (146 do we have to consider “crossed”
diagrams. and therefore
The applications of the recursion relations lie potentially
in both statistical and particle physics. Together with a pow- o 6H §41 s PR
erful numeric integration method, the relations could be used SHy, L4 SHy, SH3t B L4H31 Had SHZL
to push the computation of critical exponents in three dimen- (A5)

sions to higher loop orders, see, e.g., RE¥s11,13.
Similar recursion relations can be set up for theories withBy exchangingd andH ~* in the derivation of EqA4) and
other field contents as well. They are a convenient startingA5) we get
point for the investigation of resummations of classes of
Feynman diagrams. Simple one-loop and multiloop tadpole oH1, — _H.H (A6)
resummation examples were given in Secs. IID and IVE, SH 2, 13742
respectively. Since the identities from which the recursion
relations are derived are nonperturbative, they might also band
useful for other expansions than the ones organized by the
number of loops or powers of coupling constants. Another _
field for future investigations is the systematic solution of 5H[21

5 f5H345 fHH S
aadH 3 OHgs  Jaa 7 P6Hg,



3524

When considering symmetric tenso® and G, we

BORIS KASTENING

PRE 61

Using Egs.(A10) and(All) it is easy to check that

have to define what we mean by derivatives with respect to

them. While Egs(A2), (A4), and (A6) obviously need ap-
propriate symmetrizations, we would like to keep Ed@sl),
(A5), and (A7) untouched.

Let us for the following considerations keeib uncon-
strained and defin& to be its symmetric part:

Gi=3(HiatHyy). (A8)

Define the derivative with respect ® by
Y + 0 A9
561 2\ oHy,  oHg) (%9)

so that with Eq(Al) immediately follows
o —5 =0 Al10
561, 3Gm| O (A10

Then, if 6/ 6G, acts on a functional that depends ldronly
throughG, it acts exactly to remove an appearancé&adh a
symmetric way,

0012 L1 0 0 ) (H it Hon = b(Srsbat 8140
5G34_Z 5H34 5H43 ( 12 21)_2( 13024 14 23)'

(A11)

We also need derivatives with respect@o !, which is

also symmetric in its indices. Since in general the symme-

trized version oH ! is not identical toG 1, it turns out to
be inconvenient to define derivatives with respedBto by
just replacingG andH by Gt andH " in Eq. (A9), respec-
tively. Define instead

o
E=_J'34613G24@, (A12)
which trivially implies
b f G13G,4 0 A13
5612_ 34 13 ~24 56541. ( )

APPENDIX B: ELIMINATION OF

o o

—,—|=0. Al4
567 363 (ALY

Using that

L fG’lG
_5G34 12— 5G34 5 15 ~52

oG f 5Gsg,

= | —=Get+ | G2

Js 6Gz % )5 156Gy,
oG

ZJ—G52+%(6531524+GI41523)
5 0Gg4

0

(A15)
and therefore

6GL,
0G4

6G
—y - — f G
0Gg, 56

=3 fSGG3SG46(G]TSlGZ_61+ G Gos)

=—3(G1aGo +G14 Gy, (A16)
we get

“ 6G
35 46?56

= 3( 813624+ 614029

and therefore, repeating the steps that lead ta/&46) with
the roles ofG andG ™! exchanged,

(A17)

P02 _ 46,460t G1Gry
56:;41 2 132924 142223/ -

(A18)

The upshot of these considerations is that we can work with
symmetricG andG ! in the first place if we use Eq§A10)

and (A12)—(Al14), as well as the symmetrized relations
(A1l) and(A16)—(A18).

(8°W,163,83,)¢

In the course of changing variables frahto J in Sec. 1l C, double derivatives with respectl@ppear. However, we want
to replace these kinds of terms with derivatives with respeGt to keep the resulting recursion relations as simple as possible.

From the definition(54) of Z andW we have

o 2

2 =
5G 121) ;

and therefore

oW

5°W

B 2( 561‘21)J: ( 33,583,

From

21 () - fed )

B

53,83 (B1)

R

G+ ﬁl . HZ G. (B2)
(B3)
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we get

and
( 2w ) f c 2w
= 130924 — =
63161/ 5 J34 833634/
Also,
<5w) (&N)+f 833 | [ oW (&N +ﬁk5§+5§%5w
= —_—| = 2 139271 O23J1)| —
6G1p) ; \6G1o/5 J31 686G/ |\ 63, G 6G1/ 8 J3/ &
oW 1[6W 1[6W
= tol = ot | =] %
5G12 J 2 5J1 G 2 5~J2 G
SW\| 1w s L
= + — — fG23J3+_ — fG1333
0G5 2\ 67, G2 83,) 78
Combining Eqs(B2)—(B6) yields
W SW\ [ oW SW | 1[éwW . 1
—| t| = | =| =2 s +E — f62333+— e fG13J3
5\]15\]2 G 5\]1 G 5\]2 G 12/'3 5\]1 G 3 5\]2 3

From Eq.(68) we have

oW, B
—| = | G2,
53, 2

5°W,

831835/ o

and combining this with Eqg57) and (B7) finally gives
— | 4+ — —| =2
0316833/ 5 \ 831/ \ 8dz)

APPENDIX C: GRAPHS FOR W®O0

oW,
0G5

J
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(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

To demonstrate the use of the recursion relations for the Feynman diagrams consfitutiegcompute hergv9. From

Egs.(92) and(89) we get

1 1 1

(CY
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®:%Q@++gc@, c

respectively. With Eqs(87) and (91) we get

%.£:l<::>::§<)_k), (3
() -1=00a0to D00

1 1
gﬁ@:a“@ ©9

() 1=0-0-toto ]
SO0 =00 =

With Egs.(87), (91), and(C6) we have

3 3 3
io@zgw+ﬁo%+ <)

1 s leSs s lene

3 "3 1 ’ (o)

4)10-00-0D100 1A

1 1 3 3
SO0 A0 S AD s -

1 1 1 1
O{}Q~Q?@©{DCHOO
(C9
O [3) -1 0RO 000 - D000, e

and

and

and thus

(C6)

| w

N =
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2 ¥ 1 1 1
3256’@*5@*6@’ (€13

such that

and therefore, using E479),

-5 OO0 5 0D %
T 16 48 8 16
16 8 D)
1 1
w5000 5

(C13

APPENDIX D: GRAPHS FOR T30

To demonstrate the use of the recursion relations for the Feynman diagrams conslitutireg compute herd 9,
Equation(139 gives

1 1 1 1
@ B +5@ :ZO:@+5O:@ WO:(D’ (D)
while Eq. (143 gives
1 1 ¥
CJ 1 N

1 1 ) 5 1

OOIO»J

(D2)
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and therefore

1 1 1 1 1 1
:IEOOO+Z§@+§@+§ *E@*ﬂ@'

(D3)
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