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Recursive graphical construction of Feynman diagrams inf4 theory: Asymmetric case
and effective energy

Boris Kastening
Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

~Received 27 August 1999!

The free energy of a multicomponent scalar field theory is considered as a functionalW@G,J# of the free
correlation functionG and an external currentJ. It obeys nonlinear functional differential equations which are
turned into recursion relations for the connected Green’s functions in a loop expansion. These relations amount
to a simple proof thatW@G,J# generates only connected graphs and can be used to find all such graphs with
their combinatoric weights. A Legendre transformation with respect to the external current converts the func-
tional differential equations for the free energy into those for the effective energyG@G,F#, which is consid-
ered as a functional of the free correlation functionG and the field expectationF. These equations are turned
into recursion relations for the one-particle irreducible Green’s functions. These relations amount to a simple
proof thatG@G,J# generates only one-particle irreducible graphs and can be used to find all such graphs with
their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of
classes of graphs. Examples are given for resumming one-loop and multiloop tadpoles, both through all orders
of perturbation theory. Since the functional differential equations derived are nonperturbative, they constitute
also a convenient starting point for other expansions than those in numbers of loops or powers of coupling
constants. We work with general interactions through four powers in the field.

PACS number~s!: 64.60.Ak, 05.70.Fh, 11.10.Gh
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I. INTRODUCTION

The free energy of a statistical or quantum field theo
may be viewed as a functional of the free correlation fu
tions. It obeys functional differential equations which may
converted into recursion relations for the connected vacu
graphs of the theory. Subsequently, functional derivatives
W with respect to the free propagators or their inverses
be taken to generate the Feynman diagrams of all conne
Green’s functions. This program was developed a long t
ago by Kleinert@1,2#, but used only recently for a systemat
generation of all Feynman diagrams of a multicomponentf4

andf2A theory@3#, and of QED@4#. Forf4 theory, only the
symmetric case was treated.

However, both in statistical physics and particle theo
this symmetry is often broken. For this reason we genera
the symmetric treatment of Ref.@3#, and allow for interac-
tions of all powers of the field through four. We introduce
external sourceJ to be able to generate also Green’s fun
tions with odd numbers of external legs as derivatives ofW.
In contrast to Ref.@3#, this also enables us to generate co
nected Feynman diagrams for then-point functions through
L loops without having to generate any diagrams with m
thanL loops first. As a byproduct, we get an alternative pro
to the one found in Refs.@1,2# that W generates only con
nected Green’s functions.

We then Legendre transform the functional different
equations forW@G,J# into ones for the effective energy~or
effective action in quantum theory! G@G,F# and derive from
these recursion relations for the one-particle irreduci
~1PI! Feynman diagrams representing the proper vertice
the theory. No graphs beyondL loops have to be considere
to generate propern-point vertices throughL loops. As a
by-product, we get an alternative proof thatG@G,F# gener-
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ates only 1 PI Green’s functions, similar to the one found
Refs.@1,2#.

By using G as a functional argument, and, to the exte
possible, derivatives with respect toG instead ofJ or F, we
keep the identities forW andG and the recursion relations fo
the connected and 1 PI Green’s functions simple. In cont
to Ref. @3#, we do not use the technique of ‘‘cutting’’ fre
correlation functions, but always ‘‘amputate’’ them. As
Ref. @3#, the graphical operations necessary to solve the
cursion relations can be implemented on a computer for
efficient generation of higher order graphs.

Formally, we consider all our calculations for a statistic
theory ind Euclidean dimensions, but with trivial changes
factors i, all results are valid as well for a quantum fie
theory in Minkowski space and for quantum mechanics.
this work, where we often deal with more than one intera
tion term, our ordering principle is always the number
loops and not powers of coupling constants.

The structure of the paper is as follows. In Sec. II w
repeat the steps that led to a functional identity forW@G#
and a recursion relation for its perturbative coefficients
Refs. @1–3#. This gives us the opportunity to specify ou
slightly different conventions. Going beyond the consid
ations in Ref.@3#, we treat part of the quadratic term as
perturbation. This can be used to cancel one-loop tadp
corrections which drastically reduces the number of vacu
graphs for the free energy, as utilized before in Refs.@5,6#.

In Sec. III we treat the asymmetric case for the free e
ergy W@G,J#. We derive identities forW@G,J# and recur-
sion relations for the Feynman diagrams representing
connected Green’s functions.

In Sec. IV we translate the identities forW@G,J# into
identities for the effective energyG@G,F# and subsequently
derive recursion relations for the one-particle irreducib
3501 © 2000 The American Physical Society
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~1 PI! Feynman diagrams representing the proper vertice
the theory. We finally present how part of the quadratic te
can be treated as a perturbation to cancel all tadpole co
tions to propagators in graphs needed for the proper vert
with one or more external legs, thereby drastically reduc
the number of diagrams. Section V contains a summary
our results and an outlook.

II. SYMMETRIC CASE

A. Definitions

Consider a scalar fieldf with N components ind Euclid-
ean dimensions whose thermal fluctuations are controlled
the energy functional

E@f,G,D,L#5 1
2 E

12
~G12

211D12!f1f2

1 1
24 E

1234
L1234f1f2f3f4 , ~1!

whereL1234 is a self-coupling and where we keep the opti
open to treat a partD12 of the quadratic term inE as a
perturbation. The numerical indices of*, G21, D, andL are
meant as a short-hand and represent spatial as well as t
rial arguments

1[$x1 ,a1%, E
1
[(

a1

E ddx1 , f1[fa1
~x1!, ~2!

G12
21[Ga1a2

21 ~x1 ,x2!, D12[Da1a2
~x1 ,x2!,

L1234[La1a2a3a4
~x1 ,x2 ,x3 ,x4!. ~3!

For example, in standardf4 theory we would have

Ga1a2

21 ~x1 ,x2!5da1a2
d~x12x2!~]1•]21m2!, ~4!

Da1a2
~x1 ,x2!5dm2da1a2

d~x12x2!, ~5!

La1a2a3a4
~x1 ,x2 ,x3 ,x4!5 1

3 l~da1a2
da3a4

1da1a3
da2a4

1da1a4
da2a3

!d~x12x2!

3d~x12x3!d~x12x4!, ~6!

where dm2 could represent a modification ofm2 that we
want to treat perturbatively. Using natural units, where
Boltzmann constantkB times the temperatureT equals unity,
the partition functionZ and the negative free energyW are
given by a functional integral over the Boltzmann weig
exp(2E@f#),

Z@G,D,L#5exp~W@G,D,L# !

5E Df exp~2E@f,G,D,L# !. ~7!
of

c-
es
g
of

y

so-

e

t

B. Identity for WI

RegardingW as a functional of the kernelG21, we can
derive a functional differential equation forW. Our starting
point is the identity

E Df
d

df1
$f2 exp~2E@f,G,D,L# !%50, ~8!

which follows from functional partial integration and th
vanishing of the exponential at infinite fields.

Carrying out thef1 derivative, replacing appearances
f i with appropriate derivatives with respect toG21 and fi-
nally using the results of Appendix A to translate all su
derivatives into derivatives with respect toG yields an iden-
tity for W,

d1222E
3
G23

dW

dG13
22E

345
D13G24G35

dW

dG45

2 2
3 E

345
L1345F E

67
~G23G46G571G26G37G45!

dW

dG67
G

2 2
3 E

345
L1345F E

6789
G26G37G48G59

d2W

dG67dG89
G

2 2
3 E

345
L1345F E

6789
G26G37

dW

dG67
G48G59

dW

dG89
G50.

~9!

Split W into a free and an interacting part,

W5W01WI[WuD,L501WI . ~10!

For W0 , Eq. ~9! reduces to

d1222E
3
G23

dW0

dG13
50, ~11!

so that, using also the results of Appendix A, we get
useful relations

dW0

dG12
5 1

2 G12
21 ~12!

and

d2W0

dG12dG34
52 1

4 ~G13
21G24

211G14
21G23

21!. ~13!

Up to an additive constant, which we assume to be adjus
to zero by an appropriate normalization of the path integ
measureDf, W0 itself is given as usual by

~14!

where we have introduced a graphical representation forW0 .
Subtracting Eq.~11! from Eq. ~9!, using Eqs.~12! and

~13!, settingx25x1 , and integrating overx1 gives a nonlin-
ear functional differential equation forWI ,
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E
12

G12

dWI

dG12
1 1

4 E
1234

L1234G12G341
1
2 E

12
D12G12

1E
1234

D12G13G24

dWI

dG34
1E

123456
L1234G12G35G46

dWI

dG56

1 1
3 E

12345678
L1234G15G26G37G48

d2WI

dG56dG78

1 1
3 E

12345678
L1234G15G26G37G48

dWI

dG56

dWI

dG78
50. ~15!

For D50, this reduces to Eq.~2.58! in Ref. @3#.
e

~16!

~17!

Lines that are connected at both ends are propagatorsG. All
space arguments that are not indicated by numbers are
grated over. Now Eq.~15! reads
~18!
Note that a derivative with respect toG graphically means
removing~‘‘amputating’’! a line from a Feynman graph~for
details see Ref.@3# and Appendix A!. This will be important
when we representWI as a sum of Feynman graphs in th
next section. For example, the operation onWI on the left-
hand side of Eq.~18! multiplies each graph inWI by the
number of its lines.

C. Recursion relation

Now split WI andD into different loop orders,

~19!

and
~20!

whereD (L) counts formally forL intrinsic loops.
Equation~18! then splits into

~21!

from which follows

~22!

and
~23!

for L.2.
Let us now derive a recursion relation for theW(L) themselves instead of their derivatives with respect toG. First note that

sinceW depends only onG21 andD only through the combinationG211D we have

dW

dD12
5

dW

dG12
21 52E

34
G13G24

dW

dG34
, ~24!

where we have used Eq.~A12!.
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Because of Eq.~20! we can write then for anyL

~25!

Splitting up into loop orders gives

~26!

for 1< l<L22 and, using Eq.~12!,

~27!

for L>1. Since anL-loop diagram without two-point insertions contains 2(L21) propagators and since anl-loop two-point
insertion causes a reduction in the number of propagators by 2l 21, the following relation for theL-loop contribution toW
holds forL>2:

E
12
FG12

d

dG12
1 (

l 51

L21

~2l 21!D12
~ l !

d

dD12
~ l !GW~L !52~L21!W~L !. ~28!

Making use of Eqs.~26! and ~27! this can be rewritten as

F E
12

G12

dW~L !

dG12
2

2L23

2 E
12

D12
~L21!G122 (

l 51

L22

~2l 21!E
123

D12
~ l !G13G24

dW~L2 l !

dG34
G52~L21!W~L ! ~29!

or

~30!

Rewriting the first term using the recursion relation~23! gives

~31!

for L.2. ForD50 and appropriately adjusted conventions this reduces to Eq.~2.64! in @3#.
We have used Eqs.~22! and~31! to determine all vacuum graphs and their weights~i.e., combinatorial prefactors! through

five loops for the caseD50 and listed them in Table I.
With a one-loop correction

~32!

we get the additional graphs listed in Table II.

D. One-loop resummation

Let us now try to adjust the one-loop two-point insertion~32! so that it cancels the trivial but ubiquitous one-loo
fluctuation , present in most diagrams in Table I. For this purpose, define
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~33!

and set

~34!

for L.1. Then Eq.~31! becomes

~35!

for L.2.
Now we show~i! thatW(3) contains the two terms on the right hand side of Eq.~33! only in this combination and~ii ! that

if W(L) with L.2 contains the two terms on the right-hand side of Eq.~33! only in this combination, then this is also true fo
W(L11).

Using Eqs.~22! and ~35! gives

~36!

which proves~i!. The only terms on the right hand side of Eq.~35! that could potentially violate~ii ! are the terms withl
52 and/orL2 l 52 in the sum. If bothl 52 andL2 l 52 ~i.e., for L54), the only term in the sum is

TABLE I. Vacuum diagrams with their weights through five loops.
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~37!

If only one of l andL2 l equals 2~i.e., for L.4), the potentially dangerous terms in the sum are of the form

~38!

That is, in both cases only the combination on the right-hand side of Eq.~33! appears. This finishes the proof of~ii !.

TABLE II. Additional vacuum diagrams through five loops caused by the one-loop insertion

and their weights.
ven
nt

s an
Once we have used the recursion relation~35! to compute
any W(L), we can set

~39!

such that
~40!

This drastically reduces the number of diagrams in any gi
order, since forL.2 no one-loop mass corrections is prese
anymore. However, we are not allowed to use the result a
input for our recursion relation~35!, since the two terms on
the right hand side of Eq.~33! behave differently in the re-
cursion relation.

Note that now
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TABLE III. Remaining diagrams with their weights through six loops with a one-loop adjusted two-point insertion.
c

s
in

gy
e

in
pa-
~41!

With the condition~40! this becomes

~42!

which is the only diagram left with a one-loop mass corre
tion.

In Table III we list the diagrams with their weight
through six loops that are left after adjusting the two-po
insertion according to Eq.~39!. Through four and five loops
this adjustment has been used in Refs.@5# and @6#, respec-
tively, to simplify the renormalization of the vacuum ener
in f4 theory, which is used for the computation of som
-

t

universal critical amplitude ratios@7#.
As an alternative to explicitly constructing the graphs

Table II by recursion relations, we could replace the pro
gator in the graphs of Table I according to

G21→G211D, ~43!

i.e.,

G→~G211D!215G~11DG!21

5G1GDG1GDGDG1¯ , ~44!

with

D1252 1
2 E

34
L1234G34. ~45!

Diagrammatically, this amounts to replacing
the same
~46!

and adding up the resulting graphs through the appropriate loop order. The result is again the graphs in Table III with
weights.
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III. GENERAL CASE

A. Definitions

Now let us generalize our treatment to the case with g
eral interactions through four powers in the field

E@f,C,J,G,K,L#5C1E
1
J1f11 1

2 E
12

G12
21f1f2

1 1
6 E

123
K123f1f2f3

1 1
24 E

1234
L1234f1f2f3f4 , ~47!

whereG12
21, K123, andL1234 are symmetric in their indices

For example, for aZ2-symmetric single-componentf4

theory with background fieldw, i.e.,

E@f#5E
1
@ 1

2 ~]mw1]mf!21 1
2 m2~w1f!2

1 1
24 l~w1f!41c#1 , ~48!

we would have

C5E
1
@ 1

2 ~]mw!21 1
2 m2w21 1

24 lw41c#1 , ~49!

J152]2w11m2w11 1
6 lw1

3, ~50!

G12
215d12~]1•]21m21 1

2 lw1w2!, ~51!

K1235d12d13lw1 , ~52!

L12345d12d13d14l. ~53!

The partition functionZ and the negative free energyW are
given by

Z@C,J,G,K,L#5exp~W@C,J,G,K,L# !

5E Df exp~2E@f,C,J,G,K,L# !.

~54!

The energy is now regarded as a function ofC and a
functional off, J, G, K, andL. We will mainly be interested
in its dependence onf, J, andG.

B. Identities for WI

We continue with deriving identities similar to Eq.~9!.
We now have the possibility to represent each occurrenc
the field f by a derivative with respect toJ. We keep the
number of these derivatives at a minimum and use as m
as possible derivatives with respect toG to keep the identi-
ties and the recursion relations derived from them as sim
as possible.

The identities we need are
-

of

ch

le

05exp~2W@C,J,G,K,L# !E Df
d

df1

3exp~2E@f,C,J,G,K,L# !

52J11E
2
G12

21 dW

dJ2
1E

23
K123

dW

dG23
21

2 1
3 E

234
L1234S d2W

dJ2dG34
21 1

dW

dJ2

dW

dG34
21D ~55!

and

05exp~2W@C,J,G,K,L# !E Df
d

df1

3$f2 exp~2E@f,C,J,G,K,L# !%

5d121J1

dW

dJ2
12E

3
G13

21 dW

dG23
21

2E
34

K134S d2W

dJ2dG34
21 1

dW

dJ2

dW

dG34
21D

2 2
3 E

345
L1345S d2W

dG23
21dG45

21 1
dW

dG23
21

dW

dG45
21D , ~56!

where we have followed similar steps as for the derivation
Eq. ~9! except that we have not yet replaced derivatives w
respect toG21 by those with respect toG.

Split W again into a free and an interacting part,

W5W01WI[WuK,L501WI . ~57!

For W0 , Eqs.~55! and ~56! reduce to

2J11E
2
G12

21 dW0

dJ2
50 ~58!

and

d121J1

dW0

dJ2
12E

3
G13

21 dW0

dG23
21 50, ~59!

respectively. Combining them and using the results from A
pendix A, we get the useful relations

dW0

dJ1
5E

2
G12J2 , ~60!

dW0

dG12
21 52 1

2 S G121E
34

G13J3G24J4D , ~61!

d2W0

dJ1dG23
21 52 1

2 E
4
~G12G341G13G24!J4 , ~62!

and
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d2W0

dG12
21dG34

21 5 1
4 FG13G241G14G231E

56
~G13G25G461G14G25G361G23G15G461G24G15G36!J5J6G . ~63!

With the same normalization of the path integral measureDf as before we have

W0@C,J,G#5 lnE Df expS 2C2E
1
J1f12 1

2 E
12

G12
21f1f2D

5 lnE Df expF2C2E
1
J1S f12E

2
G12J2D 2 1

2 E
12

G12
21S f12E

3
G13J3D S f22E

4
G24J4D G

52C1 1
2 E

12
G12J1J21 lnE Df expS 2 1

2 E
12

G12
21f1f2D 52C1 1

2 E
12

G12J1J22 1
2 E

1
~ ln G21!11. ~64!

Subtracting Eq.~58! from Eq.~55!, multiplying with *2G12J2 , integrating overx1 and using Eqs.~60!–~62! and Eq.~A12!,
we get

E
1
J1

dWI

dJ1
2 1

2 E
1234

K123G12G34J42 1
2 E

123456
K123G14J4G25J5G36J61 1

2 E
123456

L1234G12G35J5G46J6

1 1
6 E

12345678
L1234G15J5G26J6G37J7G48J82E

123456
K123G14J4G25G36

dWI

dG56
1 1

6 E
12345

L1234G12G35J5

dWI

dJ4

1 1
6 E

1234567
L1234G15J5G26J6G37J7

dWI

dJ4
1 1

3 E
12345678

L1234G15J5G26J6G37G48

dWI

dG78

1 1
3 E

1234567
L1234G15J5G36G47

d2WI

dJ2dG67
1 1

3 E
1234567

L1234G15J5G36G47

dWI

dJ2

dWI

dG67
50. ~65!

Subtracting Eq.~59! from Eq. ~56!, settingx25x1 , integrating overx1 and using Eqs.~60!–~63! and ~A12! we get

E
1
J1

dWI

dJ1
22E

12
G12

dWI

dG12
1 3

2 E
1234

K123G12G34J41 1
2 E

123456
K123G14J4G25J5G36J62 1

2 E
1234

L1234G12G34

2E
123456

L1234G12G35J5G46J62 1
6 E

12345678
L1234G15J5G26J6G37J7G48J81 1

2 E
123

K123G12

dWI

dJ3

1 1
2 E

12345
K123G14J4G25J5

dWI

dJ3
1E

123456
K123G14J4G25G36

dWI

dG56
1E

12345
K123G24G35

d2WI

dJ1dG45

1E
12345

K123G24G35

dWI

dJ1

dWI

dG45
22E

123456
L1234G12G35G46

dWI

dG56
2 2

3 E
12345678

L1234G15J5G26J6G37G48

dWI

dG78

2 2
3 E

12345678
L1234G15G26G37G48

d2WI

dG56dG78
2 2

3 E
12345678

L1234G15G26G37G48

dWI

dG56

dWI

dG78
50. ~66!
t
de

o

C. Change of variables

Instead of representing Eqs.~64!–~66! graphically, let us
first perform a change of variables that reduces the amoun
work needed for solving the recursion relations to be
rived. SinceJ is always connected to a free propagatorG, we
can as well define a modified current

J̄15E
2
G12J2 , ~67!
of
-

which already incorporates this propagator. Then Eq.~64!
can be rewritten as

W0@C,J̄,G#52C1 1
2 E

12
G12

21J̄1J̄22 1
2 E

1
~ ln G21!11.

~68!

Performing this change of variables introduces into theW
identities double derivatives with respect toJ̄ which we
would like to avoid in favor of derivatives with respect t
free correlation functionG. This can be achieved with the
result
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S d2WI

d J̄1d J̄2
D

G

1S dWI

d J̄1
D

G

S dWI

d J̄2
D

G

52S dWI

dG12
D

J

~69!

of Appendix B.
Equations~65! and ~66! then become

E
1
J̄1

dWI

d J̄1

2 1
2 E

123
K123G12J̄32 1

2 E
123

K123J̄1J̄2J̄31 1
2 E

1234
L1234G12J̄3J̄41 1

6 E
1234

L1234J̄1J̄2J̄3J̄42E
12345

K123J̄1G24G35

dWI

dG45

2E
1234

K123J̄1J̄2G34

dWI

d J̄4

1 1
2 E

12345
L1234G12J̄3G45

dWI

d J̄5

1 1
2 E

12345
L1234J̄1J̄2J̄3G45

dWI

d J̄5

1E
123456

L1234J̄1J̄2G35G46

dWI

dG56

1 1
3 E

1234567
L1234J̄1G25G36G47

d2WI

d J̄5dG67

1 1
3 E

1234567
L1234J̄1G25G36G47

dWI

d J̄5

dWI

dG67

50 ~70!

and

2E
12

G12

dWI

dG12

1E
1
J̄1

dWI

d J̄1

2 3
2 E

123
K123G12J̄32 1

2 E
123

K123J̄1J̄2J̄31 1
2 E

1234
L1234G12G341E

1234
L1234G12J̄3J̄4

1 1
6 E

1234
L1234J̄1J̄2J̄3J̄42 3

2 E
1234

K123G12G34

dWI

d J̄4

2 3
2 E

1234
K123J̄1J̄2G34

dWI

d J̄4

23E
12345

K123J̄1G24G35

dWI

dG45

2E
123456

K123G14G25G36

d2WI

d J̄4dG56

2E
123456

K123G24G35G16

dWI

d J̄6

dWI

dG45

12E
123456

L1234G12G35G46

dWI

dG56

12E
12345

L1234G12J̄3G45

dWI

d J̄5

12E
123456

L1234J̄1J̄2G35G46

dWI

dG56

1 2
3 E

12345
L1234J̄1J̄2J̄3G45

dWI

d J̄5

1 2
3 E

12345678
L1234G15G26G37G48

d2WI

dG56dG78

1 4
3 E

1234567
L1234J̄1G25G36G47

d2WI

dG56d J̄7

1 2
3 E

12345678
L1234G15G26G37G48

dWI

dG56

dWI

dG78

1 4
3 E

1234567
L1234J̄1G25G36G47

dWI

d J̄5

dWI

dG67

50. ~71!

To represent Eqs.~70! and ~71! graphically, write for the derivatives ofWI with respect toJ̄ andG

~72!

and use the vertices

~73!

PropagatorsG are indicated by lines connected at both ends. The double line onJ̄ indicates that the propagator is absorbed in
our new currentJ̄, so derivatives with respect toG act only on propagators not connected to a current, i.e., on single lines@see,
however, Eq.~75!#. All space arguments that are not indicated by numbers are integrated over.

We can write Eq.~68! now as

~74!
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where by definition

~75!

Eq. ~70! as

~76!

and Eq.~71! as

~77!

By construction, the simpler equation~76! involves only theJ-dependent terms and is therefore by itself not sufficient for
investigation of theJ-independent terms, for which Eq.~77! has to be used.

D. Recursion relations

For later use note the following topological relations. Letn4 be the number of four-vertices,n3 the number of three-vertices
n1 the number ofJ̄s , nG the number of free propagatorsG not connected to aJ andL the number of loops in a connecte
diagramD. Then

3n314n45n112nG , n312n452~L21!1n1 , ~78!

and

~79!
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It is useful to consider a double expansion in the numberL of loops and powersn of J or J̄,

~80!

Then theL-loop contribution to the connectedn-point function with vanishing sourceJ is given by

Gi 1 ,...,i n
~c!~L,n!5

dn

dJi 1
¯dJi n

W~L !uJ505
dn

dJi 1
¯dJi n

W~L,n!. ~81!

We have

~82!

and from Eq.~74!

~83!

The otherW(L,n) constituteWI .
Using

~84!

Eq. ~76! can be split into

~85!

~86!

~87!

~88!

and the recursion relation

~89!
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where the dot on the equal sign means that the right hand side only involvesW( i , j ) that are part ofWI , i.e., excluding (i , j )
P$(0,0),(0,1),(0,2),(1,0)% and negativei or j. Equation~89! is valid for all W(L,n) which are part ofWI with the exception of
(L,n)P$(0,3),(0,4),(1,1),(1,2)%.

From Eq.~77! follow again equations leading with Eq.~79! to Eqs.~85!–~88!, but also

~90!

which with Eq.~79! becomes

~91!

and a recursion relation which we write down only forn50, since forn.0 the simpler relation~89! can be used:

~92!

Equation~92! is valid for L.2.
Note that in Eq.~92!, but not in Eq.~89!, the right-hand side involves graphs with more legs than the left-hand side, na

one more. This implies that for the generation of vacuum graphs, we have to consider also one-point functions. For a
it is enough to consider only diagrams with equal or less numbers of legs. Note further that if all lower loop orders conta
connected graphs, then the recursion relations generate only connected graphs. This establishes by induction thatW generates
only connected graphs, as shown before in Refs.@1,2#.

As an example, we computeW(3,0) in Appendix C. Combining Eqs.~83!, ~91!, and the result~C13! of Appendix C, we get
W at J50 in the three-loop approximation

~93!

At this low loop order, it is still relatively easy to check that the weights come out the same when using the combin
prescriptions that come with the usual Feynman rules. I have written a computer code implementing the recursion rela
the connected graphs. If we restrict ourselves to the symmetric case, it reproduces the graphs and multiplicities~trivially
related to the weights, see Ref.@3#! of Tables I–III in Ref.@3# and also all relevant entries in Tables V through VII there

Except for the vacuum diagrams, we still have to use Eq.~81! to convert the graphs representingW into connected Green’s
functions. For example, to compute the zero-loop contributionG1234

(c)(0,4) to the connected four-point function we combine Eq
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~81! and ~86! to get

~94!
ex
ti

c

n

PI

te

dd

rm

tate
n

s

o

That is, each diagram withn external currents is multiplied
by n!, supplied by external arguments replacing theJs and
then splits into ‘‘crossed’’ graphs related by exchanging
ternal arguments. The external legs represent free correla
functionsG.

IV. EFFECTIVE ENERGY

Often in field theory, one is interested rather in the effe
tive energy or effective actionG than the free energyW and
rather in the 1PI Feynman diagrams than the connected o
Therefore, we translate in the following the identities forW
into identities forG and derive recursion relations for the 1
Feynman diagrams representing the proper vertices.

A. Relations betweenW and G

Since the physical situation in which we are interes
does not necessarily correspond toJ50, let us for the pur-
pose of performing a Legendre transform introduce an a
tional sourceĴ into the definition of the partition functionZ
and the negative free energyW,

Z@ Ĵ,C,J,G,K,L#5exp~W@ Ĵ,C,J,G,K,L# !

5E Df expS 2E@f,C,J,G,K,L#

1E
1
Ĵ1f1D . ~95!

Note that we trivially have the relations

Z@ Ĵ,C,J,G,K,L#5Z@C,J2 Ĵ,G,K,L# ~96!

and

W@ Ĵ,C,J,G,K,L#5W@C,J2 Ĵ,G,K,L# ~97!

between the quantities defined in Eq.~54! and those in Eq.
~95!. With Eq. ~64! it follows then that

W0@ Ĵ,C,J,G#[W@ Ĵ,C,J,G,K,L#uK,L50

5W@C,J2 Ĵ,G,K,L#uK,L50

5W0@C,J,2 Ĵ,G#

52C1 1
2 E

12
G12~J12 Ĵ1!~J22 Ĵ2!

2 1
2 E

1
~ ln G21!11. ~98!

Define the effective energyG by the Legendre transform
-
on

-

es.

d

i-

G@F,C,J,G,K,L#52W@ Ĵ,C,J,G,K,L#1E
1
Ĵ1F1 , ~99!

where the new variableF is defined by

F15S dW

d Ĵ1
D

C,J,G,K,L

, ~100!

which implicitly definesĴ as functional ofF. As usual we
have

S dG

dF1
D

C,J,G,K,L

5 Ĵ1 . ~101!

Notice that as intended by introducing the extra source te
and performing the Legendre transform with respect toĴ
instead ofJ, we do not have to setJ50 but only Ĵ50 to
have a proper effective energy giving us the equation of s
~or the equation of motion if we consider an effective actio!
through its stationary points.

In the following, we assumeC, J, K, andL to be fixed and
do not treat them as variables. Let us use the notation

S d2F

dx1dx2
D

~y1y2!

[S d

dx1
D

y1

S d

dx2
D

y2

F. ~102!

For deriving identities forG we first need some relation
between the functional derivatives ofW and G. With Eqs.
~100! and ~101! we get

P12[S d2W

d Ĵ1d Ĵ2
D

G

5S dF2

d Ĵ1
D

G

5S d Ĵ1

dF2
D

G

21

5S d2G

dF1dF2
D

G

21

.

~103!

For F50, P is the usual propagator. It will turn out useful t
reexpressP12 as

P125S d2 ln Z

d Ĵ1d Ĵ2
D

G

5
1

Z S d2Z

d Ĵ1d Ĵ2
D

G

2
1

Z2 S dZ

d Ĵ1
D

G

S dZ

d Ĵ2
D

G

52
2

Z
S dZ

dG12
21D

Ĵ

2
1

Z2 S dZ

d Ĵ1
D

G

S dZ

d Ĵ2
D

G

522S dW

dG12
21D

Ĵ

2S dW

d Ĵ1
D

G

S dW

d Ĵ2
D

G

52S dG

dG12
21D

F

2F1F2 , ~104!
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where we have used

S dW

dG12
D

Ĵ

5S d

dG12
D

Ĵ
F E

3
Ĵ3F32GG

5E
3
Ĵ3S dF3

dG12
D

Ĵ

2S dG

dG12
D

Ĵ

5E
3
Ĵ3S dF3

dG12
D

Ĵ

2F S dG

dG12
D

F

1E
3
S dG

dF3
D

G
S dF3

dG12
D

Ĵ
G

52S dG

dG12
D

F

. ~105!

Further we have

S d2W

d Ĵ1dG23
D

~GĴ!

5S dF1

dG23
D

Ĵ

52E
4
S dF1

d Ĵ4
D

G

S d Ĵ4

dG23
D

F

52E
4
P14S d2G

dF4dG23
D

~GF!

~106!

and

S d2W

dG12dG34
D

Ĵ

52S d2G

dG12dG34
D

~ ĴF!

52S d2G

dG12dG34
D

F

2E
5
S d2G

dF5dG34
D

~GF!

3S dF5

dG12
D

Ĵ

52S d2G

dG12dG34
D

F

1E
56
S d2G

dF5dG34
D

~GF!

P56S d2G

dF6dG12
D

~GF!

.

~107!

B. Identities for G I

Making use of Eq.~97! and the relations just derived, Eq
~55! and ~56! can be rewritten as

052J11
dG

dF1
2E

2
G12

21F22E
23

K123

dG

dG23
21

2 1
3 E

234
L1234S E

5
P25

d2G

dF5dG34
21 1F2

dG

dG34
21D

~108!

and
05d122J1F21
dG

dF1
F222E

3
G13

21 dG

dG23
21

2E
34

K134S E
5
P25

d2G

dF5dG34
21 1F2

dG

dG34
21D

1 2
3 E

345
L1345S d2G

dG23
21dG45

21

2E
67

d2G

dF6dG45
21 P67

d2G

dF7dG23
212

dG

dG23
21

dG

dG45
21D .

~109!

We have omitted now indicating the variables that are k
fixed, since everything is written in terms of the variablesF
andG.

Split G into a free and an interacting part

G5G01G I[GuK,L501G I . ~110!

Then,

G0@F,C,J,G#52W0@ Ĵ,C,J,G#1E
1
Ĵ1F1

52W0@C,J2 Ĵ,G#1E
1
Ĵ1F1 ~111!

with

F15
dW0@ Ĵ,C,J,G#

d Ĵ1

5
dW0@C,J2 Ĵ,G#

d Ĵ1

5E
2
G12~ Ĵ22J2!,

~112!

i.e.,

Ĵ15J11E
2
G12

21F2 . ~113!

Using Eq.~64!, we get

G0@F,C,J,G#5C1 1
2 E

1
~ ln G21!111E

1
J1F1

1 1
2 E

12
G12

21F1F2 . ~114!

For G0 , Eqs.~108! and ~109! reduce to

052J11
dG0

dF1
2E

2
G12

21F2 ~115!

and

05d122J1F21
dG0

dF1
F222E

3
G13

21 dG0

dG23
21 , ~116!

respectively, so that
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dG0

dF1
5J11E

2
G12

21F2 ~117!

and

dG0

dG12
21 5 1

2 ~G121F1F2!. ~118!

In the following we also need

d2G0

dF1dF2
5G12

21, ~119!

d2G0

dF1dG23
21 5 1

2 ~d12F31d13F2!, ~120!
and

d2G0

dG12
21dG34

21 52 1
4 ~G13G241G14G23!. ~121!

Notice that with Eqs.~104!, ~118!, and~A12! we get

P125G1212
dG I

dG12
21 5G1222E

34
G13G24

dG I

dG34
. ~122!

Subtracting Eq.~115! from Eq. ~108!, multiplying with
F1 , integrating overx1 and using Eqs.~118!, ~120!, and
~A12! gives
05E
1

dG I

dF1
F12 1

2 E
123

K123F1F2F32 1
6 E

1234
L1234F1F2F3F42 1

2 E
123

K123F1G232
1
2 E 1234L1234G12F3F4

1E
12345

K123F1G24G35

dG I

dG45
1E

123456
L1234F1F2G35G46

dG I

dG56
1 1

3 E
1234567

L1234F1G25G36G47

d2G I

dF5dG67

2 2
3 E

123456789
L1234F1G25G67G38G49

dG I

dG56

d2G I

dF7dG89
. ~123!

Subtracting Eq.~116! from Eq. ~109!, settingx25x1 , integrating overx1 and using Eqs.~118!, ~120!, ~121!, and ~A12!
gives

05E
1

dG I

dF1

F112E
12

G12

dG I

dG12

2 1
2 E

123
K123F1F2F32 1

6 E
1234

L1234F1F2F3F42 3
2 E

123
K123G12F32E 1234L1234G12F3F4

2 1
2 E

1234
L1234G12G3413E

12345
K123F1G24G35

dG I

dG45

1E
123456

K123G14G25G36

dG I

dF4dG56

22E
12345678

K123G34G56G27G38

dG I

dG45

d2G I

dF6dG78

12E
123456

L1234F1F2G35G46

dG I

dG56

12E
123456

L1234G12G35G46

dG I

dG56

1 4
3 E

1234567
L1234F1G25G36G47

d2G I

dF5dG67

1 2
3 E

12345678
L1234G15G26G37G48

d2G I

dG56dG78

2 2
3 E

12345678
L1234G15G26G37G48

dG I

dG55

dG I

dG78

2 8
3 E

123456789
L1234F1G25G38G49G67

dG I

dG56

d2G I

dF7dG89

2 2
3 E

11̄22̄33̄44̄56
L1234G11̄G22̄G33̄G44̄G56

d2G I

dF5dG1̄2̄

d2G I

dF6dG3̄4̄

1 4
3 E

11̄22̄33̄44̄5678
L1234G11̄G22̄G33̄G44̄G56G78

d2G I

dF5dG1̄2̄

dG I

dG67

d2G I

dF8dG3̄4̄

. ~124!

To represent Eqs.~123! and ~124! graphically, write for the derivatives ofG I with respect toF andG

~125!
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and use the vertices

~126!

Instances ofF are indicated by
~127!

Free propagatorsG are indicated by lines connected at both ends. The double lines onJ and F indicate that there are no
propagators attached to them in the diagrams, so derivatives with respect toG act only on single lines@see, however, Eq
~129!#. All space arguments that are not indicated by numbers are integrated over.

Now Eq. ~114! can be written as

~128!

where by definition

~129!

and Eq.~122! as

~130!

We can write Eq.~123! as

~131!

and Eq.~124! as

~132!
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Note that in the limit whereK50 andF50 this is identical to Eq.~18! in the limit D50 if there we replaceWI→G I .

C. Recursion relations

Consider a double expansion in the number of loopsL and powersn of F,

~133!

@the double-indexed circles are not identical to those in Eq.~80!#. Then theL-loop contribution to the propern-point vertex
with vanishing external field is given by

G i 1 ,...,i n
~L,n! 5

dn

dF i 1
¯dF i n

G~L !uF505
dn

dF i 1
¯dF i n

G~L,n!. ~134!

We have from Eq.~128!

~135!

The otherG (L,n) constituteG I .
Using

~136!

Eq. ~131! can be split into

~137!

~138!

and the recursion relation

~139!

where the dot on the equal sign means that the right-hand side only involvesG ( i , j ) that are part ofG I , i.e., excluding (i , j )
P$(0,0),(0,1),(0,2),(1,0)% and negativei or j. Equation~139! is valid for all G (L,n), which are part ofG I with the exception
of (L,n)P$(0,3),(0,4),(1,1),(1,2)%.

Note that from Eq.~139! it follows that

~140!

for n.4.
From Eq.~132! follow again equations leading, together with Eq.~79!, to Eqs.~137! and ~138!, but also

~141!
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which with Eq.~79! becomes

~142!

and a recursion relation which we write down only forn50, since forn.0 the simpler relation~139! can be used:

~143!

Equation~143! is valid for L.2.
Note that in Eq.~143!, but not in Eq.~139!, the right-hand side involves graphs with more legs than the left-hand

namely, one more. This implies that for the generation of vacuum graphs, we have to consider also one-point functi
all others it is enough to consider only diagrams with equal or less numbers of legs. Note further that if all lower loop
contain only 1PI graphs then the recursion relations also generate only 1PI graphs. This establishes by inductioG
generates only 1PI graphs, as shown before in Refs.@1,2#.

As an example, we computeG (3,0) in Appendix D. Combining Eqs.~135!, ~142!, and the result~D3! of Appendix D, we get
the effective energyG at F50 in the three-loop approximation,

~144!

where propagator and vertices may contain a background-field dependence as given, e.g., by Eqs.~49!–~53!. The correspond-
ing effective potentialV in this model is then given byG@F50,C,J,G,K,L#5VV(w), where V is the volume of
d-dimensional space. That is, it can be computed from vacuum graphs with constant background fieldw. Note that the
right-hand side of Eq.~144! is the right-hand side of Eq.~93! with the one-particle reducible graphs omitted.

Except for the vacuum diagrams, we still have to use Eq.~134! to convert the graphs representingG into proper vertices.
For example, to compute the one-loop contributionG123

(1,3) to the three-point vertex, we first use Eqs.~137!–~139! to get

~145!

and then with Eq.~134! obtain

~146!
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That is, each diagram withn external fieldsF is multiplied by2n!, supplied by external arguments replacing theFs , and
then splits into ‘‘crossed’’ graphs related by exchanging external arguments. In contrast to the case of connected
functions, the external legs carry only the external arguments and do not represent free correlation functionsG.

D. Graphs for renormalization

For the purpose of perturbatively renormalizing standardf4 theory, we need the 1PI Feynman diagrams representingG (L,0),
G (L,2), andG (L,4) for the caseJ5K50. All G (L,n) with odd n are then identically zero. The recursion relation for vacu
graphs withL.2 results from writing Eq.~143! for J5K50 and then making use of Eq.~78! with n15n350,

~147!

Notice that this is identical to Eq.~31! for vanishing two-point insertion.
For n52 andn54 we rewrite Eq.~139! with J5K50. ForG (L,2) we get forL.1

~148!

while for G (L,4) we get forL.0

~149!

Since now we have written down only the recursion relations without starting with the identities forG I again, we use for
the low-order terms not covered by Eqs.~147!–~149! just the results~135!, ~137!, ~138!, and~142! of Sec. IV C withJ5K
50,

~150!

It is now easy to use Eqs.~147!–~149! to obtain, e.g.~compare to the 1PI graphs in the tables in Ref.@3#; for the vacuum
graphs, compare also with Table I in this work!,

~151!

~152!
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~153!

~154!

~155!

~156!
o
e

g
th
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th

s
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e
c

fie

the
ela-
s

ght-
In this way, all the graphs needed for the renormalization
f4 theory can be obtained~for a five-loop treatment se
Refs.@8,9#!. There is no need to go beyondL loop order to
determine all 1PI zero-, two-, and four-point graphs throu
L loops. I have written a computer code implementing
recursion relations for the 1PI graphs. If we restrict oursel
to the symmetric case, it reproduces the 1PI graphs and
multiplicities ~trivially related to the weights, see Ref.@3#! of
Tables I–III in Ref.@3# and also all relevant entries in Table
V–VII there.

E. Absorption of tadpoles

Here we discuss the absorption of tadpoles, i
F-independent subdiagrams of the form

~157!

into the propagator for diagrams representing the proper
ticesG (L,n) with n.0 in the theory. For standardf4 theory,
this amounts to an absorption of momentum-independ
propagator corrections into the mass. This drastically redu
the amount of remaining diagrams and therefore simpli
the bookkeeping for higher-loop calculations@10#.
f

h
e
s
eir

.,

r-

nt
es
s

Let us first indicate the changes to be introduced into
treatment of the asymmetric case to arrive at recursion r
tions for theG (L,n) in the presence of a two-point insertion a
defined in Sec. II. Since Eqs.~55! and~56! receive the addi-
tional terms

E
2
D12

dW

dJ2
~158!

and

2E
3
D13

dW

dG23
21 ~159!

on their respective right-hand sides, the changes on the ri
hand sides of Eqs.~108! and ~109! is the addition of the
terms

2E
2
D12F2 ~160!

and

22E
3
D13

dG

dG23
21 52E

3
D13F ~G231F2F3!12

dG I

dG23
21G ,

~161!

respectively, where we have used Eq.~118!. This leads to the
addition of
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2E
12

D12F1F2 ~162!

and

2E
12

D12F1F22E
12

G12D1212E
12

D12G13G24

dG I

dG34

~163!

to the right-hand sides of Eqs.~123! and~124!, respectively.
Then, in a notation which by now should be obvious, t
right-hand sides of Eqs.~131! and~132! receive the addition
of

~164!

and

~165!

respectively. Note that forK5F50 and G I→2WI , the
second resulting equation is identical to Eq.~18!.

Equations ~133!–~137! remain unchanged, while th
right-hand side of Eq.~138! receives the addition of

~166!

For nÞ2, Eq. ~139! remains unchanged. Forn52 with L
.1, the right-hand side of Eq.~139! receives the addition o

~167!

Finally, the right-hand sides of Eqs.~142! and~143! receive
the additions of

~168!

and

~169!

respectively.
It is not hard to see then that with and only with th

choices

~170!

at the one-loop level and
~171!

for L.1, all tadpole corrections to propagators in 1
n-point functions withn.0 will be canceled. This drasti
cally reduces the number of diagrams to be considere
higher loop orders. Notice that with Eq.~122!, the insertions
~170! and ~171! can be summarized by writing

D1252
1

2 E34
L1234P34uF50 , ~172!

i.e., by inserting the full propagator into a one-loop tadpo
@compare to Eq.~103! and the comment following it#. It
turns out that this cancellation is also true for

~173!

but not for

~174!

i.e., not for the vacuum graphs with their proper weights.
simple diagrammatical explanation for this failure is that t
combinatorics do not work out since as a matter of princi
it is undefined which part of a vacuum diagram with
cutvertex ~a vertex which connects two otherwise unco
nected parts of a diagram! is the tadpole and which part is th
rest of the diagram. A reflection of this problem was alrea
encountered in Sec. II D, where the two-loop diagram~42!
survived our one-loop resummation. Let us emphasize
the values~170! and ~171! for the two-point insertions have
to be usedafter evaluating the recursion relations.

Let us now establish the connection between our res
mation above and the one used in Ref.@10#. In that work, a
distinction is established betweenF-independent subdia
grams of the form~157!, called ‘‘snail diagrams’’ there, and
F-independent subdiagrams of the forms

~175!

called ‘‘tadpole diagrams’’ there. Reference@10# uses the
usual Schwinger-Dyson equations to adjust the triple c
pling and mass such that there are no more graphs of
n-point functions withn.1 to consider for the effective ac
tion ~equivalent to the effective energy in our treatment! that
contain any ‘‘snail’’ or ‘‘tadpole’’ subdiagrams.

One notices that graphs of the form~175! are absent alto-
gether in our treatment of the effective energy, which co
tains only truly 1PI diagrams in contrast to a weaker defi
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tion of one-particle irreducibility used in Ref.@10#, which
allows also for F-independent subdiagrams of the for
~175!. This absence can be traced to the fact that we w
with a general background fieldw in Eq. ~48!. For the com-
putation of scattering processes,w has to be adjusted to th
radiatively corrected vacuum expectation valuev of f, i.e.,
the true minimum of the effective potential, whose shift fro
the tree-level valuev0 can perturbatively be computed as
sumv5v01corrections. If we expandedv subsequently in
our graphs, the corrections would lead to exactly the d
grams containing ‘‘tadpole diagrams’’ as subdiagrams u
as a starting point in Ref.@10#. In other words, the formalism
we use already takes care of the resummation of all tadp
~175! in the effective action, so that the triple coupling a
the mass experience an appropriate correction when com
ing the corrections tov0 and settingw5v. This has nothing
to do with our recursion relations, but could have been u
by the authors of Ref.@10# from the start as well.

For the other class of subdiagrams, the ‘‘snail diagram
~157!, our result~172! agrees with the result of Ref.@10# that
the sum of all such subdiagrams amounts to a full propag
in a one-loop ‘‘snail diagram’’ and that therefore an app
priate split of the mass term in standardf4 theory will
achieve a cancellation of all such ‘‘snail diagrams.’’

V. DISCUSSION

In this work we have derived efficient recursion relatio
to generate connected and 1PI Feynman diagrams forf4

theory both with and withoutf→2f symmetry. Although
we used also external sourcesJ and field expectationsF as
functional variables, we were able to keep the recursion
lations simple by using as much as possible the free pro
gatorG as a functional variable.

Taking W as functional of bothG and J and G as func-
tional of bothG andF allowed us to combine the advantag
of both the ‘‘current approach’’ and the ‘‘kernel approach
@3#: By considering diagrams with argumentsJ andF on the
external legs we avoided having to deal with ‘‘crossed’’ d
grams which are related by exchanging external argum
on their legs. This helps keep the number of diagrams
intermediate steps low. Only when we finally want to co
vert the coefficient functions ofW andG ~in an expansion in
powers ofJ andG, respectively! into Greens functions as in
Eq. ~94! or Eq. ~146! do we have to consider ‘‘crossed
diagrams.

The applications of the recursion relations lie potentia
in both statistical and particle physics. Together with a po
erful numeric integration method, the relations could be u
to push the computation of critical exponents in three dim
sions to higher loop orders, see, e.g., Refs.@9,11,12#.

Similar recursion relations can be set up for theories w
other field contents as well. They are a convenient star
point for the investigation of resummations of classes
Feynman diagrams. Simple one-loop and multiloop tadp
resummation examples were given in Secs. II D and IV
respectively. Since the identities from which the recurs
relations are derived are nonperturbative, they might also
useful for other expansions than the ones organized by
number of loops or powers of coupling constants. Anot
field for future investigations is the systematic solution
rk
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recursion relations for Legendre transforms of higher or
than the effective energy@1,2,13#. Also, the exploitation of
derivatives with respect to tensors representing interact
as in Ref.@4# seems promising to further simplify identitie
and recursion relations.
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APPENDIX A: DERIVATIVES WITH RESPECT TO
SYMMETRIC G AND GÀ1

The basic properties of derivatives with respect to an
constrained tensorH12 and its inverseH12

21 are

F d

dH12
,

d

dH34
G5F d

dH12
21 ,

d

dH34
21G50 ~A1!

and

dH12

dH34
5

dH12
21

dH34
21 5d13d24, ~A2!

where, according to our conventions, the labels could m
discrete as well as continuous variables and thed’s are an
according combination of Kroneckerd’s and Diracd func-
tions. From

05
d

dH34
d125

d

dH34
E

5
H15

21H52

5E
5

dH15
2

dH34
H521E

5
H15

21 dH52

dH34

5E
5

dH15
21

dH34
H521H13

21d24 ~A3!

we get

dH12
21

dH34
52H13

21H42
21 ~A4!

and therefore

d

dH12
5E

34

dH34
21

dH12

d

dH34
21 52E

34
H31

21H24
21 d

dH34
21 .

~A5!

By exchangingH andH21 in the derivation of Eqs.~A4! and
~A5! we get

dH12

dH34
21 52H13H42 ~A6!

and

d

dH12
21 5E

34

dH34

dH12
21

d

dH34
52E

34
H31H24

d

dH34
. ~A7!
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When considering symmetric tensorsG and G21, we
have to define what we mean by derivatives with respec
them. While Eqs.~A2!, ~A4!, and ~A6! obviously need ap-
propriate symmetrizations, we would like to keep Eqs.~A1!,
~A5!, and~A7! untouched.

Let us for the following considerations keepH uncon-
strained and defineG to be its symmetric part:

G12[
1
2 ~H121H21!. ~A8!

Define the derivative with respect toG by

d

dG12
[ 1

2 S d

dH12
1

d

dH21
D , ~A9!

so that with Eq.~A1! immediately follows

F d

dG12
,

d

dG34
G50. ~A10!

Then, if d/dG12 acts on a functional that depends onH only
throughG, it acts exactly to remove an appearance ofG in a
symmetric way,

dG12

dG34
5

1

4 S d

dH34
1

d

dH43
D ~H121H21!5 1

2 ~d13d241d14d23!.

~A11!

We also need derivatives with respect toG21, which is
also symmetric in its indices. Since in general the symm
trized version ofH21 is not identical toG21, it turns out to
be inconvenient to define derivatives with respect toG21 by
just replacingG andH by G21 andH21 in Eq. ~A9!, respec-
tively. Define instead

d

dG12
21 [2E

34
G13G24

d

dG34
, ~A12!

which trivially implies

d

dG12
[2E

34
G13

21G24
21 d

dG34
21 . ~A13!
to

-

Using Eqs.~A10! and ~A11! it is easy to check that

F d

dG12
21 ,

d

dG34
21G50. ~A14!

Using that

05
d

dG34
d125

d

dG34
E

5
G15

21G52

5E
5

dG15
21

dG34
G521E

5
G15

21 dG52

dG34

5E
5

dG15
21

dG34
G521

1
2 ~G13

21d241G14
21d23! ~A15!

and therefore

dG12
21

dG34
52 1

2 ~G13
21G24

211G14
21G23

21!, ~A16!

we get

dG12
21

dG34
21 52E

56
G35G46

dG12
21

dG56

5 1
2 E

56
G35G46~G15

21G26
211G16

21G25
21!

5 1
2 ~d13d241d14d23! ~A17!

and therefore, repeating the steps that lead to Eq.~A16! with
the roles ofG andG21 exchanged,

dG12

dG34
21 52 1

2 ~G13G241G14G23!. ~A18!

The upshot of these considerations is that we can work w
symmetricG andG21 in the first place if we use Eqs.~A10!
and ~A12!–~A14!, as well as the symmetrized relation
~A11! and ~A16!–~A18!.
t
ible.
APPENDIX B: ELIMINATION OF „d2WI Õd J̄1d J̄2…G

In the course of changing variables fromJ to J̄ in Sec. III C, double derivatives with respect toJ̄ appear. However, we wan
to replace these kinds of terms with derivatives with respect toG to keep the resulting recursion relations as simple as poss

From the definition~54! of Z andW we have

22S dZ

dG12
21D

J

5S d2Z

dJ1dJ2
D

G

~B1!

and therefore

22S dW

dG12
21D

J

5S d2W

dJ1dJ2
D

G

1S dW

dJ1
D

G
S dW

dJ2
D

G

. ~B2!

From

S d

dJ1
D

G

5E
2
S d J̄2

dJ1
D

G
S d

d J̄2
D

G

5E
2
G12S d

d J̄2
D

G

~B3!
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we get

S dW

dJ1
D

G

5E
2
G12S dW

d J̄2
D

G

~B4!

and

S d2W

dJ1dJ2
D

G

5E
34

G13G24S d2W

d J̄3d J̄4
D

G

. ~B5!

Also,

S dW

dG12
D

J

5S dW

dG12
D

J̄

1E
3
S d J̄3

dG12
D

J
S dW

d J̄3
D

G

5S dW

dG12
D

J

1 1
2 E

3
~d13J21d23J1!S dW

d J̄3
D

G

5S dW

dG12
D

J

1
1

2 S dW

d J̄1
D

G

J21
1

2 S dW

d J̄2
D

G

J1

5S dW

dG12
D

J

1
1

2 S dW

d J̄1
D

G

E
3
G23

21J̄31
1

2 S dW

d J̄2
D

G

E
3
G13

21J̄3 . ~B6!

Combining Eqs.~B2!–~B6! yields

S d2W

d J̄1d J̄2
D

G

1S dW

d J̄1
D

G

S dW

d J̄2
D

G

52S dW

dG12
D

J

1
1

2 S dW

d J̄1
D

G

E
3
G23

21J̄31
1

2 S dW

d J̄2
D

G

E
3
G13

21J̄3 . ~B7!

From Eq.~68! we have

S dW0

dG12
D

J

5 1
2 G12

212 1
2 E

34
G13

21G24
21J̄3J̄4 , ~B8!

S dW0

d J̄1
D

G

5E
2
G12

21J̄2 , ~B9!

S d2W0

d J̄1d J̄2
D

G

5G12
21 ~B10!

and combining this with Eqs.~57! and ~B7! finally gives

S d2WI

d J̄1d J̄2
D

G

1S dWI

d J̄1
D

G

S dWI

d J̄2
D

G

52S dWI

dG12
D

J

. ~B11!

APPENDIX C: GRAPHS FOR W„3,0…

To demonstrate the use of the recursion relations for the Feynman diagrams constitutingW, we compute hereW(3,0). From
Eqs.~92! and ~89! we get

~C1!
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and

~C2!

respectively. With Eqs.~87! and ~91! we get

~C3!

~C4!

and

~C5!

and thus

~C6!

With Eqs.~87!, ~91!, and~C6! we have

~C7!

~C8!

~C9!

~C10!
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~C11!

such that

~C12!

and therefore, using Eq.~79!,

~C13!

APPENDIX D: GRAPHS FOR G „3,0…

To demonstrate the use of the recursion relations for the Feynman diagrams constitutingG, we compute hereG (3,0).
Equation~139! gives

~D1!

while Eq. ~143! gives

~D2!
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and therefore

~D3!
ys
g

n,
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